Forecasting with k-factor Gegenbauer processes:: Theory and applications

被引:50
作者
Ferrara, L
Guégan, D
机构
[1] Ctr Observat Econ, F-75382 Paris 08, France
[2] Ecole Normale Super, Cachan, France
关键词
long memory; k-factor Gegenbauer process; prediction function; prediction error; urban transport traffic;
D O I
10.1002/for.815
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper deals with the k-factor extension of the long memory Gegenbauer process proposed by Gray et al. (1989). We give the analytic expression of the prediction function derived from this long memory process and provide the h-step-ahead prediction error when parameters are either known or estimated. We investigate the predictive ability of the k-factor Gegenbauer model on real data of urban transport traffic in the Paris area, in comparison with other short- and long-memory models. Copyright (C) 2001 John Wiley & Sons, Ltd.
引用
收藏
页码:581 / 601
页数:21
相关论文
共 48 条
[1]  
[Anonymous], ADV EC 6 WORLD C
[2]  
[Anonymous], 1993, J TIME SER ANAL
[3]  
Barkoulas J.T., 1997, J FINANC RES, V20, P355
[4]  
Beran J, 1994, STAT LONG MEMORY PRO
[5]   A comparison of techniques of estimation in long-memory processes [J].
Bisaglia, L ;
Guegan, D .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1998, 27 (01) :61-81
[6]  
BISAGLIA L, 1998, THESIS U STUDI PADOV
[7]  
Box GEP., 1976, TIME SERIES ANAL FOR
[8]  
Brockwell P.J., 1991, TIME SERIES THEORY M
[9]  
Brodsky J, 1999, J FORECASTING, V18, P59, DOI 10.1002/(SICI)1099-131X(199901)18:1<59::AID-FOR711>3.0.CO
[10]  
2-V