An alternative to Ewald sums, part 2: The Coulomb potential in a periodic system

被引:21
作者
Sperb, R [1 ]
机构
[1] ETH, Sect Angew Math, CH-8092 Zurich, Switzerland
关键词
Coulomb potential; Ewald sums;
D O I
10.1080/08927029908022096
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The formulae for the Coulomb potential derived in this paper apply to the situation most commonly encountered in applications: a basic cell containing N charges and their periodic images. The Coulomb energy or the Coulomb forces can then be calculated using e.g., Ewald sums. The formulae given here have several advantages over the Ewald technique, in particular when N is large.
引用
收藏
页码:199 / 212
页数:14
相关论文
共 9 条
[1]   SIMULATION OF ELECTROSTATIC SYSTEMS IN PERIODIC BOUNDARY-CONDITIONS .1. LATTICE SUMS AND DIELECTRIC-CONSTANTS [J].
DELEEUW, SW ;
PERRAM, JW ;
SMITH, ER .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1980, 373 (1752) :27-56
[2]  
Ewald PP, 1921, ANN PHYS-BERLIN, V64, P253
[3]   A FAST ALGORITHM FOR PARTICLE SIMULATIONS [J].
GREENGARD, L ;
ROKHLIN, V .
JOURNAL OF COMPUTATIONAL PHYSICS, 1987, 73 (02) :325-348
[5]   SUMMATION OF COULOMB FIELDS IN COMPUTER-SIMULATED DISORDERED-SYSTEMS [J].
LEKNER, J .
PHYSICA A, 1991, 176 (03) :485-498
[6]  
Madelung E, 1918, PHYS Z, V19, P524
[7]   An alternative to Ewald sums - Part I: Identities for sums [J].
Sperb, R .
MOLECULAR SIMULATION, 1998, 20 (03) :179-200
[8]   EXTENSION AND SIMPLE PROOF OF LEKNER SUMMATION FORMULA FOR COULOMB FORCES [J].
SPERB, R .
MOLECULAR SIMULATION, 1994, 13 (03) :189-193
[9]  
SPERB R, 9803 ETH