A local limit theorem for random walk maxima with heavy tails

被引:61
作者
Asmussen, S
Kalashnikov, V
Konstantinides, D
Klüppelberg, C
Tsitsiashvili, G
机构
[1] Lund Univ, Dept Math Stat, S-22100 Lund, Sweden
[2] Univ Copenhagen, Dept Actuarial Math, DK-2100 Copenhagen, Denmark
[3] Univ Aegean, Dept Math, Samos 83200, Greece
[4] Tech Univ Munich, Ctr Math Sci, D-80290 Munich, Germany
[5] Russian Acad Sci, Inst Appl Math, Vladivostok 690041, Russia
关键词
integrated tail; ladder height; subexponential distribution;
D O I
10.1016/S0167-7152(02)00033-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For a random walk with negative mean and heavy-tailed increment distribution F, it is well known that under suitable subexponential assumptions, the distribution pi of the maximum has a tail pi(x, infinity) which is asymptotically proportional to integral(x)(infinity)F(y,infinity) dy. We supplement here this by a local result showing that pi(x, x + z] is asymptotically proportional to zF(x,infinity). (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:399 / 404
页数:6
相关论文
共 11 条
[1]  
Asmussen S, 1998, ANN APPL PROBAB, V8, P354
[2]   Tail asymptotics for M/G/1 type queueing processes with subexponential increments [J].
Asmussen, S ;
Moller, JR .
QUEUEING SYSTEMS, 1999, 33 (1-3) :153-176
[3]  
Asmussen S, 2008, APPL PROBABILITY QUE, V51
[4]  
Asmussen S., 2000, Ruin probabilities
[5]   ESTIMATES FOR THE PROBABILITY OF RUIN WITH SPECIAL EMPHASIS ON THE POSSIBILITY OF LARGE CLAIMS [J].
EMBRECHTS, P ;
VERAVERBEKE, N .
INSURANCE MATHEMATICS & ECONOMICS, 1982, 1 (01) :55-72
[6]   Ruin under interest force and subexponential claims: a simple treatment [J].
Kalashnikov, V ;
Konstantinides, D .
INSURANCE MATHEMATICS & ECONOMICS, 2000, 27 (01) :145-149
[7]  
Kl├a┬╝ppelberg P.C., 1997, MODELLING EXTREMAL E
[8]   SUBEXPONENTIAL DISTRIBUTIONS AND INTEGRATED TAILS [J].
KLUPPELBERG, C .
JOURNAL OF APPLIED PROBABILITY, 1988, 25 (01) :132-141
[9]   SUBEXPONENTIAL DISTRIBUTIONS AND CHARACTERIZATIONS OF RELATED CLASSES [J].
KLUPPELBERG, C .
PROBABILITY THEORY AND RELATED FIELDS, 1989, 82 (02) :259-269
[10]   Activity periods of an infinite server queue and performance of certain heavy tailed fluid queues [J].
Resnick, S ;
Samorodnitsky, G .
QUEUEING SYSTEMS, 1999, 33 (1-3) :43-71