The ubiquitin-proteasome proteolytic pathway: Destruction for the sake of construction

被引:3302
作者
Glickman, MH [1 ]
Ciechanover, A
机构
[1] Technion Israel Inst Technol, Fac Biol, IL-32000 Haifa, Israel
[2] Technion Israel Inst Technol, Inst Catalysis Sci & Technol, IL-32000 Haifa, Israel
[3] Technion Israel Inst Technol, Bruce Rappaport Fac Med, Dept Biochem, IL-31096 Haifa, Israel
关键词
D O I
10.1152/physrev.00027.2001
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Between the 1960s and 1980s, most life scientists focused their attention on studies of nucleic acids and the translation of the coded information. Protein degradation was a neglected area, considered to be a nonspecific, dead-end process. Although it was known that proteins do turn over, the large extent and high specificity of the process, whereby distinct proteins have half-lives that range from a few minutes to several days, was not appreciated. The discovery of the lysosome by Christian de Duve did not significantly change this view, because it became clear that this organelle is involved mostly in the degradation of extracellular proteins, and their proteases cannot be substrate specific. The discovery of the complex cascade of the ubiquitin pathway revolutionized the field. It is clear now that degradation of cellular proteins is a highly complex, temporally controlled, and tightly regulated process that plays major roles in a variety of basic pathways during cell life and death as well as in health and disease. With the multitude of substrates targeted and the myriad processes involved, it is not surprising that aberrations in the pathway are implicated in the pathogenesis of many diseases, certain malignancies, and neurodegeneration among them. Degradation of a protein via the ubiquitin/proteasome pathway involves two successive steps: 1) conjugation of multiple ubiquitin moieties to the substrate and 2) degradation of the tagged protein by the downstream 26S proteasome complex. Despite intensive research, the unknown still exceeds what we currently know on intracellular protein degradation, and major key questions have remained unsolved. Among these are the modes of specific and timed recognition for the degradation of the many substrates and the mechanisms that underlie aberrations in the system that lead to pathogenesis of diseases.
引用
收藏
页码:373 / 428
页数:56
相关论文
共 547 条
[1]   Defective regulation of the epithelial Na+ channel by Nedd4 in Liddle's syndrome [J].
Abriel, H ;
Loffing, J ;
Rebhun, JF ;
Pratt, JH ;
Schild, L ;
Horisberger, JD ;
Rotin, D ;
Staub, O .
JOURNAL OF CLINICAL INVESTIGATION, 1999, 103 (05) :667-673
[2]   Degradation of myogenic transcription factor MyoD by the ubiquitin pathway in vivo and in vitro: Regulation by specific DNA binding [J].
Abu Hatoum, O ;
Gross-Mesilaty, S ;
Breitschopf, K ;
Hoffman, A ;
Gonen, H ;
Ciechanover, A ;
Bengal, E .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (10) :5670-5677
[3]  
Abu-Shaar M, 1998, DEVELOPMENT, V125, P3821
[4]  
Adams GM, 1998, BIOCHEMISTRY-US, V37, P12927, DOI 10.1017/S1431927600024880
[5]   Structural and functional effects of PA700 and modulator protein on proteasomes [J].
Adams, GM ;
Falke, S ;
Goldberg, AL ;
Slaughter, CA ;
DeMartino, GN ;
Gogol, EP .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 273 (03) :646-657
[6]   UNSCRAMBLING THE PUZZLE OF BIOLOGICAL MACHINES - THE IMPORTANCE OF THE DETAILS [J].
ALBERTS, B ;
MIAKELYE, R .
CELL, 1992, 68 (03) :415-420
[7]   Imprinted expression of the murine Angelman syndrome gene, Ube3a, in hippocampal and Purkinje neurons [J].
Albrecht, U ;
Sutcliffe, JS ;
Cattanach, BM ;
Beechey, CV ;
Armstrong, D ;
Eichele, G ;
Beaudet, AL .
NATURE GENETICS, 1997, 17 (01) :75-78
[8]   Ubiquitin, cellular inclusions and their role in neurodegeneration [J].
Alves-Rodrigues, A ;
Gregori, L ;
Figueiredo-Pereira, ME .
TRENDS IN NEUROSCIENCES, 1998, 21 (12) :516-520
[9]   Analysis of the deubiquitinating enzymes of the yeast Saccharomyces cerevisiae [J].
Amerik, AY ;
Li, SJ ;
Hochstrasser, M .
BIOLOGICAL CHEMISTRY, 2000, 381 (9-10) :981-992
[10]  
Amerik AY, 1997, EMBO J, V16, P4826