Genetic local search for multi-objective combinatorial optimization

被引:350
作者
Jaszkiewicz, A [1 ]
机构
[1] Poznan Univ Tech, Inst Comp Sci, PL-60965 Poznan, Poland
关键词
multi-objective combinatorial optimization; metaheuristics; genetic local search;
D O I
10.1016/S0377-2217(01)00104-7
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
The paper presents a new genetic local search (GLS) algorithm for mufti-objective combinatorial optimization (MOCO). The goal of the algorithm is to generate in a short time a set of approximately efficient solutions that will allow the decision maker to choose a good compromise solution. In each iteration, the algorithm draws at random a utility function and constructs a temporary population composed of a number of best solutions among the prior generated solutions. Then, a pair of solutions selected at random from the temporary population is recombined. Local search procedure is applied to each offspring. Results of the presented experiment indicate that the algorithm outperforms other mufti-objective methods based on GLS and a Pareto ranking-based mufti-objective genetic algorithm (GA) on travelling salesperson problem (TSP). (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:50 / 71
页数:22
相关论文
共 38 条
[1]  
Ackley D. H., 1987, CONNECTIONIST MACHIN
[2]  
[Anonymous], 1989, GENETIC ALGORITHM SE
[3]  
[Anonymous], J MULTICRITERIA DECI, DOI DOI 10.1002/(SICI)1099-1360(199907)8:4{
[4]  
BORGES PC, 1998, IMMREP1988 U DENM DE
[5]  
Czyzzak P., 1998, Journal of Multi-Criteria Decision Analysis, V7, P34, DOI [DOI 10.1002/(SICI)1099-1360(199801)7:13.0.CO
[6]  
2-6, DOI 10.1002/(SICI)1099-1360(199801)7:1<34::AID-MCDA161>3.0.CO
[7]  
2-6, 10.1002/(SICI)1099-1360(199801)7:13.0.CO
[8]  
2-6]
[9]  
Finkel R. A., 1974, Acta Informatica, V4, P1, DOI 10.1007/BF00288933
[10]   An Overview of Evolutionary Algorithms in Multiobjective Optimization [J].
Fonseca, Carlos M. ;
Fleming, Peter J. .
EVOLUTIONARY COMPUTATION, 1995, 3 (01) :1-16