Selective progressive response of soil microbial community to wild oat roots

被引:261
作者
DeAngelis, Kristen M. [1 ,2 ]
Brodie, Eoin L. [1 ]
DeSantis, Todd Z. [1 ]
Andersen, Gary L. [1 ]
Lindow, Steven E. [2 ]
Firestone, Mary K. [1 ,3 ]
机构
[1] Lawrence Berkeley Natl Lab, Dept Ecol, Berkeley, CA USA
[2] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
rhizosphere soil; 16S rRNA; microarray; PhyloChip; T-RFLP; bacterial and archaeal populations; AMMONIA-OXIDIZING BACTERIA; RHIZOSPHERE; PLANT; DIVERSITY; RNA; AVAILABILITY; DYNAMICS; PCR; DATABASE; CELLS;
D O I
10.1038/ismej.2008.103
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Roots moving through soil induce physical and chemical changes that differentiate rhizosphere from bulk soil, and the effects of these changes on soil microorganisms have long been a topic of interest. The use of a high-density 16S rRNA microarray (PhyloChip) for bacterial and archaeal community analysis has allowed definition of the populations that respond to the root within the complex grassland soil community; this research accompanies compositional changes reported earlier, including increases in chitinase- and protease-specific activity, cell numbers and quorum sensing signal. PhyloChip results showed a significant change compared with bulk soil in relative abundance for 7% of the total rhizosphere microbial community (147 of 1917 taxa); the 7% response value was confirmed by16S rRNA terminal restriction fragment length polymorphism analysis. This PhyloChip-defined dynamic subset was comprised of taxa in 17 of the 44 phyla detected in all soil samples. Expected rhizosphere-competent phyla, such as Proteobacteria and Firmicutes, were well represented, as were less-well-documented rhizosphere colonizers including Actinobacteria, Verrucomicrobia and Nitrospira. Richness of Bacteroidetes and Actinobacteria decreased in soil near the root tip compared with bulk soil, but then increased in older root zones. Quantitative PCR revealed rhizosphere abundance of beta-Proteobacteria and Actinobacteria at about 10(8) copies of 16S rRNA genes per g soil, with Nitrospira having about 10(5) copies per g soil. This report demonstrates that changes in a relatively small subset of the soil microbial community are sufficient to produce substantial changes in functions observed earlier in progressively more mature rhizosphere zones.
引用
收藏
页码:168 / 178
页数:11
相关论文
共 51 条
[1]   PHYLOGENETIC IDENTIFICATION AND IN-SITU DETECTION OF INDIVIDUAL MICROBIAL-CELLS WITHOUT CULTIVATION [J].
AMANN, RI ;
LUDWIG, W ;
SCHLEIFER, KH .
MICROBIOLOGICAL REVIEWS, 1995, 59 (01) :143-169
[2]  
Atlas RN, 1993, MICROBIAL ECOLOGY FU
[3]   Terminal restriction fragment length polymorphism data analysis for quantitative comparison of microbial communities [J].
Blackwood, CB ;
Marsh, T ;
Kim, SH ;
Paul, EA .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (02) :926-932
[4]   LIVE/DEAD® BacLight™:: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water [J].
Boulos, L ;
Prévost, M ;
Barbeau, B ;
Coallier, J ;
Desjardins, R .
JOURNAL OF MICROBIOLOGICAL METHODS, 1999, 37 (01) :77-86
[5]  
Brimecombe MJ, 2001, BOOKS SOIL PLANT ENV, P95
[6]   Galactosides in the rhizosphere:: Utilization by Sinorhizobium meliloti and development of a biosensor [J].
Bringhurst, RM ;
Cardon, ZG ;
Gage, DJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (08) :4540-4545
[7]   Ammonia-oxidizing bacteria on root biofilms and their possible contribution to N use efficiency of different rice cultivars [J].
Briones, AM ;
Okabe, S ;
Umemiya, Y ;
Ramsing, NB ;
Reichardt, W ;
Okuyama, H .
PLANT AND SOIL, 2003, 250 (02) :335-348
[8]   Bacterial community dynamics across a floristic gradient in a temperate upland grassland ecosystem [J].
Brodie, E ;
Edwards, S ;
Clipson, N .
MICROBIAL ECOLOGY, 2002, 44 (03) :260-270
[9]   Urban aerosols harbor diverse and dynamic bacterial populations [J].
Brodie, Eoin L. ;
DeSantis, Todd Z. ;
Parker, Jordan P. Moberg ;
Zubietta, Ingrid X. ;
Piceno, Yvette M. ;
Andersen, Gary L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (01) :299-304
[10]   Application of a high-density oligonucleotide microarray approach to study bacterial population dynamics during uranium reduction and reoxidation [J].
Brodie, Eoin L. ;
DeSantis, Todd Z. ;
Joyner, Dominique C. ;
Baek, Seung M. ;
Larsen, Joern T. ;
Andersen, Gary L. ;
Hazen, Terry C. ;
Richardson, Paul M. ;
Herman, Donald J. ;
Tokunaga, Tetsu K. ;
Wan, Jiamin M. ;
Firestone, Mary K. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2006, 72 (09) :6288-6298