Freestanding Three-Dimensional Graphene/MnO2 Composite Networks As Ultra light and Flexible Supercapacitor Electrodes

被引:1308
作者
He, Yongmin [1 ]
Chen, Wanjun [1 ]
Li, Xiaodong [1 ]
Zhang, Zhenxing [1 ]
Fu, Jiecai [1 ]
Zhao, Changhui [1 ]
Xie, Erqing [1 ]
机构
[1] Lanzhou Univ, Sch Phys Sci & Technol, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
graphene; 3D conductive network; flexible; ultralight; MnO2; supercapacitor; MATERIALS SCIENCE; HIGH-ENERGY; PERFORMANCE; STORAGE; PAPER;
D O I
10.1021/nn304833s
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A lightweight, flexible, and highly efficient energy management strategy is needed for flexible energy-storage devices to meet a rapidly growing demand. Graphene-based flexible supercapacitors are one of the most promising candidates because of their intriguing features. In this report, we describe the use of freestanding, lightweight (0.75 mg/cm(2)), ultrathin (<200 mu m), highly conductive (55 S/cm), and flexible three-dimensional (3D) graphene networks, loaded with MnO2 by electrodeposition, as the electrodes of a flexible supercapacitor. It was found that the 3D graphene networks showed an ideal supporter for active materials and permitted a large MnO2 mass loading of 9.8 mg/cm(2) (similar to 92.9% of the mass of the entire electrode), leading to a high area capacitance of 1.42 F/cm(2) at a scan rate of 2 mV/s. With a view to practical applications, we have further optimized the MnO2 content with respect to the entire electrode and achieved a maximum specific capacitance of 130 F/g. In addition, we have also explored the excellent electrochemical performance of a symmetrical supercapacitor (of weight less than 10 mg and thickness similar to 0.8 mm) consisting of a sandwich structure of two pieces of 3D graphene/MnO2 composite network separated by a membrane and encapsulated in polyethylene terephthalate (PET) membranes. This research might provide a method for flexible, lightweight, high-performance, low-cost, and environmentally friendly materials used in energy conversion and storage systems for the effective use of renewable energy.
引用
收藏
页码:174 / 182
页数:9
相关论文
共 45 条
[1]   Highly Dispersed RuO2 Nanoparticles on Carbon Nanotubes: Facile Synthesis and Enhanced Supercapacitance Performance [J].
Bi, Rong-Rong ;
Wu, Xing-Long ;
Cao, Fei-Fei ;
Jiang, Ling-Yan ;
Guo, Yu-Guo ;
Wan, Li-Jun .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (06) :2448-2451
[2]   Preparation of Novel 3D Graphene Networks for Supercapacitor Applications [J].
Cao, Xiehong ;
Shi, Yumeng ;
Shi, Wenhui ;
Lu, Gang ;
Huang, Xiao ;
Yan, Qingyu ;
Zhang, Qichun ;
Zhang, Hua .
SMALL, 2011, 7 (22) :3163-3168
[3]   Mechanically strong, electrically conductive, and biocompatible graphene paper [J].
Chen, Haiqun ;
Mueller, Marc B. ;
Gilmore, Kerry J. ;
Wallace, Gordon G. ;
Li, Dan .
ADVANCED MATERIALS, 2008, 20 (18) :3557-+
[4]   Direct growth of flexible carbon nanotube electrodes [J].
Chen, Jun ;
Minett, Andrew I. ;
Liu, Yong ;
Lynam, Carol ;
Sherrell, Peter ;
Wang, Caiyun ;
Wallace, Gordon G. .
ADVANCED MATERIALS, 2008, 20 (03) :566-+
[5]  
Chen ZP, 2011, NAT MATER, V10, P424, DOI [10.1038/NMAT3001, 10.1038/nmat3001]
[6]   Synergistic Effects from Graphene and Carbon Nanotubes Enable Flexible and Robust Electrodes for High-Performance Supercapacitors [J].
Cheng, Yingwen ;
Lu, Songtao ;
Zhang, Hongbo ;
Varanasi, Chakrapani V. ;
Liu, Jie .
NANO LETTERS, 2012, 12 (08) :4206-4211
[7]   3D Macroporous Graphene Frameworks for Supercapacitors with High Energy and Power Densities [J].
Choi, Bong Gill ;
Yang, MinHo ;
Hong, Won Hi ;
Choi, Jang Wook ;
Huh, Yun Suk .
ACS NANO, 2012, 6 (05) :4020-4028
[8]   Graphene for energy conversion and storage in fuel cells and supercapacitors [J].
Choi, Hyun-Jung ;
Jung, Sun-Min ;
Seo, Jeong-Min ;
Chang, Dong Wook ;
Dai, Liming ;
Baek, Jong-Beom .
NANO ENERGY, 2012, 1 (04) :534-551
[9]   Ultrathick freestanding aligned carbon nanotube films [J].
Ci, Lijie ;
Manikoth, Shaijumon M. ;
Li, Xuesong ;
Vajtai, Robert ;
Ajayan, Pulickel M. .
ADVANCED MATERIALS, 2007, 19 (20) :3300-+
[10]  
Conway B. E., 1999, ELECTROCHEMICAL SUPE, P19