Vanadate trapping of nucleotide at the ATP-binding sites of human multidrug resistance P-glycoprotein exposes different residues to the drug-binding site

被引:70
作者
Loo, TW
Clarke, DM [1 ]
机构
[1] Univ Toronto, Dept Med, Canadian Inst Hlth Res, Grp Membrane Biol, Toronto, ON M5S 1A8, Canada
[2] Univ Toronto, Dept Biochem, Canadian Inst Hlth Res, Grp Membrane Biol, Toronto, ON M5S 1A8, Canada
关键词
D O I
10.1073/pnas.022049799
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The human multidrug resistance P-glycoprotein uses ATP to transport a wide variety of structurally unrelated cytotoxic compounds out of the cell. In this study, we used cysteine-scanning mutagenesis and cross-linking studies to identify residues that are exposed to the drug-binding site upon vanadate trapping. In the absence of nucleotides, C222(TM4) was cross-linked to C868(TM10) and C872(TM10); C306(TM5) was cross-linked to C868(TM10), C872(TM10), C945(TM11), C982(TM12), and C984(TM12); and C339(TM6) was cross-linked to C868(TM10), C872(TM10), C942(TM11), C982(TM12), and C985(TM12). These cysteines are in the middle of the predicted transmembrane (TM) segments and form the drug-binding site. Cross-linking between 332C(TM6) and cysteines introduced at the extracellular side of other TM segments was also done. In the absence of nucleotides, residues 332C and 856C on the extracellular side of TMs 6 and 10, respectively, were cross-linked with a 13-Angstrom cross-linker (M8M, 3,6-dioxaoctane-1,8-diyl bismethanethiosulfonate). ATP plus vanadate inhibited cross-linking between 332C(TM6) and 856C(TM10) as well as those in the drug-binding site. Instead, vanadate trapping promoted cross-linking between 332C(TM6) and 976C(TM12) with a 10-Angstrom cross-linker (M6M, 1,6-hexanediyl bismethanethiosulfonate). When ATP hydrolysis was allowed to proceed, then 332C(TM12) could form a disulfide bond with 975C(TM12). The cross-linking pattern of 332C(TM6) with residues in TM10 and TM12 indicates that the drug-binding site undergoes dynamic and relatively large conformational changes, and that different residues are exposed to the drug-binding site during the resting phase, upon vanadate trapping and at the completion of the catalytic cycle.
引用
收藏
页码:3511 / 3516
页数:6
相关论文
共 54 条
[1]  
ALSHAWI MK, 1994, J BIOL CHEM, V269, P8986
[2]   Relation between the turnover number for vinblastine transport and for vinblastine-stimulated ATP hydrolysis by human P-glycoprotein [J].
Ambudkar, SV ;
Cardarelli, CO ;
Pashinsky, I ;
Stein, WD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (34) :21160-21166
[3]   Biochemical, cellular, and pharmacological aspects of the multidrug transporter [J].
Ambudkar, SV ;
Dey, S ;
Hrycyna, CA ;
Ramachandra, M ;
Pastan, I ;
Gottesman, MM .
ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, 1999, 39 :361-398
[4]   PARTIAL-PURIFICATION AND RECONSTITUTION OF THE HUMAN MULTIDRUG-RESISTANCE PUMP - CHARACTERIZATION OF THE DRUG-STIMULATABLE ATP HYDROLYSIS [J].
AMBUDKAR, SV ;
LELONG, IH ;
ZHANG, JP ;
CARDARELLI, CO ;
GOTTESMAN, MM ;
PASTAN, I .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (18) :8472-8476
[5]   DISCRETE MUTATIONS INTRODUCED IN THE PREDICTED NUCLEOTIDE-BINDING SITES OF THE MDR1 GENE ABOLISH ITS ABILITY TO CONFER MULTIDRUG RESISTANCE [J].
AZZARIA, M ;
SCHURR, E ;
GROS, P .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (12) :5289-5297
[6]   The aspartate receptor cytoplasmic domain:: in situ chemical analysis of structure, mechanism and dynamics [J].
Bass, RB ;
Falke, JJ .
STRUCTURE WITH FOLDING & DESIGN, 1999, 7 (07) :829-840
[7]   Pharmacogenetics of the human drug-transporter gene MDR1:: impact of polymorphisms on pharmacotherapy [J].
Brinkmann, U ;
Roots, I ;
Eichelbaum, M .
DRUG DISCOVERY TODAY, 2001, 6 (16) :835-839
[8]   INTERNAL DUPLICATION AND HOMOLOGY WITH BACTERIAL TRANSPORT PROTEINS IN THE MDR1 (P-GLYCOPROTEIN) GENE FROM MULTIDRUG-RESISTANT HUMAN-CELLS [J].
CHEN, CJ ;
CHIN, JE ;
UEDA, K ;
CLARK, DP ;
PASTAN, I ;
GOTTESMAN, MM ;
RONINSON, IB .
CELL, 1986, 47 (03) :381-389
[9]   MULTIDRUG-RESISTANCE GENE (P-GLYCOPROTEIN) IS EXPRESSED BY ENDOTHELIAL-CELLS AT BLOOD-BRAIN BARRIER SITES [J].
CORDONCARDO, C ;
OBRIEN, JP ;
CASALS, D ;
RITTMANGRAUER, L ;
BIEDLER, JL ;
MELAMED, MR ;
BERTINO, JR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (02) :695-698
[10]  
DOIGE CA, 1992, BIOCHIM BIOPHYS ACTA, V1109, P149, DOI 10.1016/0005-2736(92)90078-Z