Two distinct high-affinity sulfate transporters with different inducibilities mediate uptake of sulfate in Arabidopsis roots

被引:266
作者
Yoshimoto, N
Takahashi, H
Smith, FW
Yamaya, T
Saito, K
机构
[1] Chiba Univ, Grad Sch Pharmaceut Sci, Dept Mol Biol & Biotechnol, Inage Ku, Chiba 2638522, Japan
[2] RIKEN, Plant Sci Ctr, Wako, Saitama 3510198, Japan
[3] CSIRO Plant Ind, Long Pocket Lab, Indooroopilly, Qld 4068, Australia
[4] Tohoku Univ, Grad Sch Agr Sci, Aoba Ku, Sendai, Miyagi 9818555, Japan
关键词
sulfate transporter; sulfate uptake; sulfur assimilation; sulfur limitation; Arabidopsis thaliana;
D O I
10.1046/j.0960-7412.2001.01231.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Sulfate transporters present at the root surface facilitate uptake of sulfate from the environment. Here we report that uptake of sulfate at the outermost cell layers of Arabidopsis root is associated with the functions of highly and low-inducible sulfate transporters, Sultr1;1 and Sultr1;2, respectively. We have previously reported that Sultr1;1 is a high-affinity sulfate transporter expressed in root hairs, epidermal and cortical cells of Arabidopsis roots, and its expression is strongly upregulated in plants deprived of external sulfate. A novel sulfate transporter gene, Sultr1,2, identified on the BAC clone F28K19 of Arabidopsis, encoded a polypeptide of 653 amino acids that is 72.6% identical to Sultr1;1 and was able to restore sulfate uptake capacity of a yeast mutant lacking sulfate transporter genes (K(m) for sulfate = 6.9+/-1.0 muM). Transgenic Arabidopsis plants expressing the fusion gene construct of the Sultr1,2 promoter and green fluorescent protein (GFP) showed specific localization of GFP in the root hairs, epidermal and cortical cells of roots, and in the guard cells of leaves, suggesting that Sultr1;2 may co-localize with Sultr1;1 in the same cell layers at the root surface. Sultr1;1 mRNA was abundantly expressed under low-sulfur conditions (50-100 muM sulfate), whereas Sultr1,2 mRNA accumulated constitutively at high levels under a wide range of sulfur conditions (50-1500 muM sulfate), indicating that Sultr1,2 is less responsive to changes in sulfur conditions. Addition of selenate to the medium increased the level of Sultr1;1 mRNA in parallel with a decrease in the internal sulfate pool in roots. The level of Sultr1;2 mRNA was not influenced under these conditions. Antisense plants of Sultr1;1 showed reduced accumulation of sulfate in roots, particularly in plants treated with selenate, suggesting that the inducible transporter Sultr1;1 contributes to the uptake of sulfate under stressed conditions.
引用
收藏
页码:465 / 473
页数:9
相关论文
共 28 条
[1]  
ASHIKARI T, 1989, APPL MICROBIOL BIOT, V30, P515
[2]   Coordinate modulation of maize sulfate permease and ATP sulfurylase mRNAs in response to variations in sulfur nutritional status: stereospecific down-regulation by L-cysteine [J].
Bolchi, A ;
Petrucco, S ;
Tenca, PL ;
Foroni, C ;
Ottonello, S .
PLANT MOLECULAR BIOLOGY, 1999, 39 (03) :527-537
[3]  
Cherest H, 1997, GENETICS, V145, P627
[4]   Engineered GFP as a vital reporter in plants [J].
Chiu, WL ;
Niwa, Y ;
Zeng, W ;
Hirano, T ;
Kobayashi, H ;
Sheen, J .
CURRENT BIOLOGY, 1996, 6 (03) :325-330
[5]   REGULATION OF SULFATE TRANSPORT IN A TROPICAL LEGUME, MACROPTILIUM-ATROPURPUREUM, CV SIRATRO [J].
CLARKSON, DT ;
SMITH, FW ;
VANDENBERG, PJ .
JOURNAL OF EXPERIMENTAL BOTANY, 1983, 34 (148) :1463-1483
[6]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[7]  
GLETZ D, 1992, NUCLEIC ACIDS RES, V20, P1425
[8]   Macronutrient utilization by photosynthetic eukaryotes and the fabric of interactions [J].
Grossman, A ;
Takahashi, H .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 2001, 52 :163-210
[9]   Analysis of the genome sequence of the flowering plant Arabidopsis thaliana [J].
Kaul, S ;
Koo, HL ;
Jenkins, J ;
Rizzo, M ;
Rooney, T ;
Tallon, LJ ;
Feldblyum, T ;
Nierman, W ;
Benito, MI ;
Lin, XY ;
Town, CD ;
Venter, JC ;
Fraser, CM ;
Tabata, S ;
Nakamura, Y ;
Kaneko, T ;
Sato, S ;
Asamizu, E ;
Kato, T ;
Kotani, H ;
Sasamoto, S ;
Ecker, JR ;
Theologis, A ;
Federspiel, NA ;
Palm, CJ ;
Osborne, BI ;
Shinn, P ;
Conway, AB ;
Vysotskaia, VS ;
Dewar, K ;
Conn, L ;
Lenz, CA ;
Kim, CJ ;
Hansen, NF ;
Liu, SX ;
Buehler, E ;
Altafi, H ;
Sakano, H ;
Dunn, P ;
Lam, B ;
Pham, PK ;
Chao, Q ;
Nguyen, M ;
Yu, GX ;
Chen, HM ;
Southwick, A ;
Lee, JM ;
Miranda, M ;
Toriumi, MJ ;
Davis, RW .
NATURE, 2000, 408 (6814) :796-815
[10]   THE PROMOTER OF TL-DNA GENE 5 CONTROLS THE TISSUE-SPECIFIC EXPRESSION OF CHIMERIC GENES CARRIED BY A NOVEL TYPE OF AGROBACTERIUM BINARY VECTOR [J].
KONCZ, C ;
SCHELL, J .
MOLECULAR & GENERAL GENETICS, 1986, 204 (03) :383-396