Universality of entropy scaling in one dimensional gapless models

被引:352
作者
Korepin, VE [1 ]
机构
[1] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.92.096402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider critical models in one dimension. We study the ground state in the thermodynamic limit (infinite lattice). We are interested in an entropy of a subsystem. We calculate the entropy of a part of the ground state from a space interval (0,x). At zero temperature it describes the entanglement of the part of the ground state from this interval with the rest of the ground state. We obtain an explicit formula for the entropy of the subsystem at any temperature. At zero temperature our formula reproduces a logarithmic formula, discovered by Vidal, Latorre, Rico, and Kitaev for spin chains. We prove our formula by means of conformal field theory and the second law of thermodynamics. Our formula is universal. We illustrate it for a Bose gas with a delta interaction and for the Hubbard model.
引用
收藏
页码:096402 / 1
页数:3
相关论文
共 22 条
[1]   UNIVERSAL TERM IN THE FREE-ENERGY AT A CRITICAL-POINT AND THE CONFORMAL ANOMALY [J].
AFFLECK, I .
PHYSICAL REVIEW LETTERS, 1986, 56 (07) :746-748
[2]   CRITICAL-BEHAVIOR OF SPIN-S HEISENBERG ANTIFERROMAGNETIC CHAINS - ANALYTIC AND NUMERICAL RESULTS [J].
AFFLECK, I ;
GEPNER, D ;
SCHULZ, HJ ;
ZIMAN, T .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (05) :511-529
[3]  
AFFLECK I, CONDMAT9802045
[4]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[5]   CONFORMAL-INVARIANCE, THE CENTRAL CHARGE, AND UNIVERSAL FINITE-SIZE AMPLITUDES AT CRITICALITY [J].
BLOTE, HWJ ;
CARDY, JL ;
NIGHTINGALE, MP .
PHYSICAL REVIEW LETTERS, 1986, 56 (07) :742-745
[6]  
Essler F.H., 1994, EXACTLY SOLVABLE MOD
[7]   CRITICAL EXPONENTS FOR THE ONE-DIMENSIONAL HUBBARD-MODEL [J].
FRAHM, H ;
KOREPIN, VE .
PHYSICAL REVIEW B, 1990, 42 (16) :10553-10565
[8]   EFFECTIVE HARMONIC-FLUID APPROACH TO LOW-ENERGY PROPERTIES OF ONE-DIMENSIONAL QUANTUM FLUIDS [J].
HALDANE, FDM .
PHYSICAL REVIEW LETTERS, 1981, 47 (25) :1840-1843
[9]   GEOMETRIC AND RENORMALIZED ENTROPY IN CONFORMAL FIELD-THEORY [J].
HOLZHEY, C ;
LARSEN, F ;
WILCZEK, F .
NUCLEAR PHYSICS B, 1994, 424 (03) :443-467
[10]  
Huang K., 1987, STAT MECH