Estimation of missing streamflow data using principles of chaos theory

被引:116
作者
Elshorbagy, A [1 ]
Simonovic, SP
Panu, US
机构
[1] Univ Kentucky, Kentucky Water Res Inst, Lexington, KY 40506 USA
[2] Univ Western Ontario, Dept Civil & Environm Engn, Inst Catastroph Loss Reduct, London, ON N6A 5B9, Canada
[3] Lakehead Univ, Dept Civil Engn, Thunder Bay, ON P7B 5E1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
chaos theory; missing data; artificial neural networks; nonlinear time series analysis;
D O I
10.1016/S0022-1694(01)00513-3
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this paper, missing consecutive streamflows are estimated, using the principles of chaos theory, in two steps. First, the existence of chaotic behavior in the daily flows of the river is investigated. The time delay embedding method of reconstructing the phase space of a time series is utilized to identify the characteristics of the nonlinear deterministic dynamics. Second, the analysis of chaos is used to configure two models employed to estimate the missing data, artificial neural networks (ANNs) and K-nearest neighbor (K-nn). The results indicate the utility of using the analysis of chaos for configuring the models. ANN model is configured using the identified correlation dimension (measure of chaos), and (K-nn) technique is applied within a subspace of the reconstructed attractor. ANNs show some superiority over K-nn in estimating the missing data of the English River, which is used as a case study. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:123 / 133
页数:11
相关论文
共 40 条
[1]   STRANGE ATTRACTORS AND CHAOS IN WASTE-WATER FLOW [J].
ANGELBECK, DI ;
MINKARA, RY .
JOURNAL OF ENVIRONMENTAL ENGINEERING, 1994, 120 (01) :122-137
[2]   Improving single-variable and multivariable techniques for estimating missing hydrological data [J].
Bennis, S ;
Berrada, F ;
Kang, N .
JOURNAL OF HYDROLOGY, 1997, 191 (1-4) :87-105
[3]   NONLINEAR PREDICTION OF CHAOTIC TIME-SERIES [J].
CASDAGLI, M .
PHYSICA D, 1989, 35 (03) :335-356
[4]  
CASDAGLI M, 1992, J ROY STAT SOC B MET, V54, P303
[5]  
CHILARDI P, 1990, WATER RESOUR RES, V26, P1837
[6]  
ELSHORBAGY A, 2001, IN PRESS J HYDROL
[7]   Group-based estimation of missing hydrological data: II. Application to streamflows [J].
Elshorbagy, AA ;
Panu, US ;
Simonovic, SP .
HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2000, 45 (06) :867-880
[8]   Group-based estimation of missing hydrological data: I. Approach and general methodology [J].
Elshorbagy, AA ;
Panu, US ;
Simonovic, SP .
HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2000, 45 (06) :849-866
[9]   PERFORMANCE EVALUATION OF ARTIFICIAL NEURAL NETWORKS FOR RUNOFF PREDICTION [J].
Elshorbagy, Amin ;
Simonovic, S. P. ;
Panu, U. S. .
JOURNAL OF HYDROLOGIC ENGINEERING, 2000, 5 (04) :424-427
[10]  
EMBRECHTS M, 1994, TRADING EDGE NEURAL, P265