Efficient Closed-loop Maximization of Carbon Nanotube Growth Rate using Bayesian Optimization

被引:58
作者
Chang, Jorge [1 ]
Nikolaev, Pavel [2 ,3 ,5 ]
Carpena-Nunez, Jennifer [2 ,3 ]
Rao, Rahul [2 ,3 ]
Decker, Kevin [2 ,3 ]
Islam, Ahmad E. [2 ,3 ]
Kim, Jiseob [4 ]
Pitt, Mark A. [1 ]
Myung, Jay I. [1 ]
Maruyama, Benji [3 ]
机构
[1] Ohio State Univ, Dept Psychol, Columbus, OH 43210 USA
[2] UES Inc, Dayton, OH 45432 USA
[3] US Air Force, Mat & Mfg Directorate, Res Lab, Dayton, OH 45433 USA
[4] Seoul Natl Univ, Sch Comp Sci & Engn, Seoul 151742, South Korea
[5] Cornerstone Res Grp, Miamisburg, OH 45342 USA
关键词
WATER;
D O I
10.1038/s41598-020-64397-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A major technological challenge in materials research is the large and complex parameter space, which hinders experimental throughput and ultimately slows down development and implementation. In single-walled carbon nanotube (CNT) synthesis, for instance, the poor yield obtained from conventional catalysts is a result of limited understanding of input-to-output correlations. Autonomous closedloop experimentation combined with advances in machine learning (ML) is uniquely suited for high-throughput research. Among the ML algorithms available, Bayesian optimization (BO) is especially apt for exploration and optimization within such high-dimensional and complex parameter space. BO is an adaptive sequential design algorithm for finding the global optimum of a black-box objective function with the fewest possible measurements. Here, we demonstrate a promising application of BO in CNT synthesis as an efficient and robust algorithm which can (1) improve the growth rate of CNT in the BO-planner experiments over the seed experiments up to a factor 8; (2) rapidly improve its predictive power (or learning); (3) Consistently achieve good performance regardless of the number or origin of seed experiments; (4) exploit a high-dimensional, complex parameter space, and (5) achieve the former 4 tasks in just over 100 hundred experiments (similar to 8 experimental hours) - a factor of 5x faster than our previously reported results.
引用
收藏
页数:9
相关论文
共 51 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS F
[2]   Role of Water in Super Growth of Single-Walled Carbon Nanotube Carpets [J].
Amama, Placidus B. ;
Pint, Cary L. ;
McJilton, Laura ;
Kim, Seung Min ;
Stach, Eric A. ;
Murray, P. Terry ;
Hauge, Robert H. ;
Maruyama, Benji .
NANO LETTERS, 2009, 9 (01) :44-49
[3]  
[Anonymous], 1997, MONTE CARLO IMPLEMEN
[4]  
[Anonymous], 2003, HIGH PERFORMANCE CAR
[5]  
[Anonymous], 2010, COMPUT SCI
[6]  
[Anonymous], 2016, BAYESIAN OPTIMIZATIO, DOI [10.1007/978-3-319-23871-5_3, DOI 10.1007/978-3-319-23871-5_3, DOI 10.1007/978-3-319-23871-53]
[7]  
[Anonymous], 2012, P 25 INT C NEURIPS
[8]   Collective Mechanism for the Evolution and Self-Termination of Vertically Aligned Carbon Nanotube Growth [J].
Bedewy, Mostafa ;
Meshot, Eric R. ;
Guo, Haicheng ;
Verploegen, Eric A. ;
Lu, Wei ;
Hart, A. John .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (48) :20576-20582
[9]   Isolating the Roles of Hydrogen Exposure and Trace Carbon Contamination on the Formation of Active Catalyst Populations for Carbon Nanotube Growth [J].
Carpena-Nunez, Jennifer ;
Boscoboinik, Jorge Anibal ;
Saber, Sammy ;
Rao, Rahul ;
Zhong, Jian-Qiang ;
Maschmann, Matthew R. ;
Kidambi, Piran R. ;
Dee, Nicholas T. ;
Zakharov, Dmitri N. ;
Hart, A. John ;
Stach, Eric A. ;
Maruyama, Benji .
ACS NANO, 2019, 13 (08) :8736-8748
[10]   Bayesian optimization for conformer generation [J].
Chan, Lucian ;
Hutchison, Geoffrey R. ;
Morris, Garrett M. .
JOURNAL OF CHEMINFORMATICS, 2019, 11