Expression of subunits of the 19S complex and of the PA28 activator in rat skeletal muscle

被引:26
作者
Attaix, D
Taillandier, D
Combaret, L
Ralliere, C
Larbaud, D
Aurousseau, E
Tanaka, K
机构
[1] CTR RECH NUTR HUMAINE CLERMONT FERRAND,F-63122 CEYRAT,FRANCE
[2] TOKYO METROPOLITAN INST MED SCI,BUNKYO KU,TOKYO 113,JAPAN
关键词
muscle wasting; 19S complex; PA28; activator; proteasome; xanthine derivatives;
D O I
10.1023/A:1006806103675
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A precise knowledge of the role of subunits of the 19S complex and the PA28 regulator, which associate with the 20S proteasome and regulate its peptidase activities, may contribute to design new therapeutic approaches for preventing muscle wasting in human diseases. The proteasome is mainly responsible for the muscle wasting of tumor-bearing and unweighted rats. The expression of some ATPase (MSS1, P45) and non ATPase (P112-L, P31) subunits of the 19S complex, and of the two subunits of the PA28 regulator, was studied in such atrophying muscles. The mRNA levels for all studied subunits increased in unweighted rats, and analysis of MSS1 mRNA distribution profile in polyribosomes showed that this subunit entered active translation. By contrast, only the mRNA levels for MSS1 increased in the muscles from cancer rats. Thus, gene expression of the proteasome regulatory subunits depends on a given catabolic state. Torbafylline, a xanthine derivative which inhibits tumor necrosis factor production, prevented the activation of protein breakdown and the increased expression of 20S proteasome subunits in cancer rats, without reducing the elevated MSS1 mRNA levels. Thus, the increased expression of MSS1 is regulated independently of 20S proteasome subunits, and did not result in accelerated proteolysis.
引用
收藏
页码:95 / 98
页数:4
相关论文
共 29 条
[1]  
AHN JY, 1995, FEBS LETT, V366, P37, DOI 10.1016/0014-5793(95)00492-R
[2]  
ATTAIX D, 1997, IN PRESS INTRACELLUL
[3]   The acidosis of chronic renal failure activates muscle proteolysis in rats by augmenting transcription of genes encoding proteins of the ATP-dependent ubiquitin-proteasome pathway [J].
Bailey, JL ;
Wang, XN ;
England, BK ;
Price, SR ;
Ding, XY ;
Mitch, WE .
JOURNAL OF CLINICAL INVESTIGATION, 1996, 97 (06) :1447-1453
[4]   ACTIVATION OF THE ATP-UBIQUITIN-PROTEASOME PATHWAY IN SKELETAL-MUSCLE OF CACHECTIC RATS BEARING A HEPATOMA [J].
BARACOS, VE ;
DEVIVO, C ;
HOYLE, DHR ;
GOLDBERG, AL .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 1995, 268 (05) :E996-E1006
[5]  
CAMBARET L, 1996, FEBS LETT, V393, P292
[6]  
COMBARET L, 1997, UNPUB
[7]   Structure and functions of the 20S and 26S proteasomes [J].
Coux, O ;
Tanaka, K ;
Goldberg, AL .
ANNUAL REVIEW OF BIOCHEMISTRY, 1996, 65 :801-847
[8]   SENSITIVITY AND PROTEIN-TURNOVER RESPONSE TO GLUCOCORTICOIDS ARE DIFFERENT IN SKELETAL-MUSCLE FROM ADULT AND OLD RATS - LACK OF REGULATION OF THE UBIQUITIN-PROTEASOME PROTEOLYTIC PATHWAY IN AGING [J].
DARDEVET, D ;
SORNET, C ;
TAILLANDIER, D ;
SAVARY, I ;
ATTAIX, D ;
GRIZARD, J .
JOURNAL OF CLINICAL INVESTIGATION, 1995, 96 (05) :2113-2119
[9]   DEVELOPMENTAL-CHANGES OF THE 26-S-PROTEASOME IN ABDOMINAL INTERSEGMENTAL MUSCLES OF MANDUCA-SEXTA DURING PROGRAMMED CELL-DEATH [J].
DAWSON, SP ;
ARNOLD, JE ;
MAYER, NJ ;
REYNOLDS, SE ;
BILLETT, MA ;
GORDON, C ;
COLLEAUX, L ;
KLOETZEL, PM ;
TANAKA, K ;
MAYER, RJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (04) :1850-1858
[10]  
DEVERAUX Q, 1994, J BIOL CHEM, V269, P7059