A mixture model approach for the analysis of microarray gene expression data

被引:255
作者
Allison, DB
Gadbury, GL
Heo, MS
Fernández, JR
Lee, CK
Prolla, TA
Weindruch, R
机构
[1] Univ Alabama, Dept Biostat, Birmingham, AL 35294 USA
[2] Univ Alabama, Ctr Res Clin Nutr, Birmingham, AL 35294 USA
[3] Univ Missouri, Dept Math & Stat, Rolla, MO 65401 USA
[4] Columbia Univ Coll Phys & Surg, Inst Human Nutr, St Lukes Roosevelt Hosp, Obes Res Ctr, New York, NY 10032 USA
[5] Univ Wisconsin, Ctr Environm Toxicol, Madison, WI 53706 USA
[6] Univ Wisconsin, Dept Genet, Madison, WI 53706 USA
[7] Univ Wisconsin, Dept Med Genet, Madison, WI 53706 USA
[8] Univ Wisconsin, Dept Med, Madison, WI USA
[9] Univ Wisconsin, Wisconsin Reg Primate Res Ctr, Madison, WI USA
[10] William S Middleton Mem Vet Adm Med Ctr, Ctr Geriatr Res Educ & Clin, Madison, WI USA
基金
美国国家卫生研究院;
关键词
D O I
10.1016/S0167-9473(01)00046-9
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Microarrays have emerged as powerful tools allowing investigators to assess the expression of thousands of genes in different tissues and organisms. Statistical treatment of the resulting data remains a substantial challenge. Investigators using microarray expression studies may wish to answer questions about the statistical significance of differences in expression of any of the genes under study, avoiding false positive and false negative results. We have developed a sequence of procedures involving finite mixture modeling and bootstrap inference to address these issues in studies involving many thousands of genes. We illustrate the use of these techniques with a dataset involving calorically restricted mice. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 33 条