ON THE AERODYNAMICS OF CAR BODY VIBRATIONS OF HIGH-SPEED TRAINS CRUISING INSIDE TUNNELS

被引:29
作者
Diedrichs, Ben [1 ]
Krajnovic, Sinisa [2 ]
Berg, Mats [1 ]
机构
[1] Royal Inst Technol, Dept Aeronaut & Vehicle Engn, Div Rail Vehicles, SE-10044 Stockholm, Sweden
[2] Chalmers, Dept Appl Mech, Div Fluid Dynam, SE-41296 Gothenburg, Sweden
关键词
train aerodynamics; tunnel aerodynamics; tail vehicle oscillation; flow-induced vibrations; lateral ride comfort; ride instability and large eddy simulation;
D O I
10.1080/19942060.2008.11015211
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Aerodynamically induced car body vibrations of high-speed trains inside tunnels have for approximately two decades been recognized as a problem in Japan, while other nations' high-speed rail services have not reported similar problems. In order to shed light on this contradiction the scope of the present paper is to primarily explore tail car vibrations of Deutsche Bahn AG's high-speed train ICE 2 and Japan Railways series 300 Shinkansen train. Despite similarities of these two trains the problems are reported only for the latter. Several large eddy simulations are carried out to predict the aerodynamics around simplified and smooth models of the above mentioned trains inside tunnels. The results focus on the ability to resolve PPD (propagating pressure disturbances) generated alongside the bodies, unsteady aerodynamic forces and their corresponding frequencies. Mesh refinement studies are undertaken for both train models, where mesh independence is quite a challenge for this type of application. Affordable meshes appropriate for LES could only be achieved for models confined to a typical car length. For smooth models and for a model with three generic inter-car gaps, the high spatial frequency of the resolved PPD does not make them sufficient to upset the ride quality of a car. A low frequency mode that strongly affects the forces of the tail of the Shinkansen models is described, which is caused by the confinement of the tunnel walls. A study of the implications of the lateral distance to the wall is further investigated. The findings reveal that the effects of the low frequency mode intensify with a narrow wall clearance, corresponding to the nominal lateral position of the train.
引用
收藏
页码:51 / 75
页数:25
相关论文
共 40 条
[1]   On computational fluid dynamics modelling of crosswind effects for high-speed rolling stock [J].
Diedrichs, B .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART F-JOURNAL OF RAIL AND RAPID TRANSIT, 2003, 217 (03) :203-226
[2]  
DIEDRICHS B, 2008, J RAIL RAPID TRANSIT
[3]  
DIEDRICHS B, 2004, 2004010229 SAE
[4]  
Ferziger J.H., 1997, COMPUTATIONAL METHOD
[5]  
HEINE C, 2001, BRPRCT970603 EUR COM
[6]  
HEINEMANN HJ, 1976, S TRANSS 2 GOTT SEPT, P75
[7]  
ISHIHARA T, 1997, INVESTIGATION LATERA, P531
[8]  
*ISO, 1985, 263111985 ISO
[10]  
KNUTTON M, 2004, INT RAILWAY J MAR