High specific capacity of TiO2-graphene nanocomposite as an anode material for lithium-ion batteries in an enlarged potential window

被引:71
作者
Cai, Dandan [1 ]
Lian, Peichao [1 ]
Zhu, Xuefeng [2 ]
Liang, Shuzhao [1 ]
Yang, Weishen [2 ]
Wang, Haihui [1 ]
机构
[1] S China Univ Technol, Sch Chem & Chem Engn, Guangzhou 510640, Guangdong, Peoples R China
[2] Chinese Acad Sci, State Key Lab Catalysis, Dalian Inst Chem Phys, Dalian 116023, Peoples R China
基金
中国国家自然科学基金;
关键词
Graphene; TiO2; Nanocomposite; Anode material; Lithium-ion batteries; SUPERIOR ELECTRODE PERFORMANCE; ELECTROCHEMICAL PERFORMANCE; CYCLING PERFORMANCE; GRAPHENE NANOSHEETS; TIO2; NANOCRYSTALS; PARTICLE-SIZE; LI STORAGE; ANATASE; NANOSTRUCTURES; COMPOSITES;
D O I
10.1016/j.electacta.2012.03.170
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
TiO2-graphene nanocomposite was first synthesized by a facile gas/liquid interface reaction. The structure and morphology were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Brunauer-Emmett-Teller measurements. The results indicate that TiO2 nanoparticles (ca. 10 nm in mean grain size) were successfully deposited onto the graphene sheets during the gas/liquid interfacial reaction process. The electrochemical performance was evaluated by using coin-type cells versus metallic lithium in an enlarged potential window of 0.01-3.0 V. A high specific charge capacity of 499 mAh g(-1) was obtained at a current density of 100 mA g(-1). More strikingly, the TiO2-graphene nanocomposite exhibits excellent rate capability, even at a high current density of 3000 mA g(-1), the specific charge capacity was still as high as 150 mAh g(-1). The high specific charge capacities can be attributed to the facts that graphene possesses high electronic conductivity, and the lithium storage performance of graphene is delivered during discharge/charge processes of TiO2-graphene nanocomposite between 0.01 and 3.0 V. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:65 / 72
页数:8
相关论文
共 47 条
  • [1] Investigation of lithium diffusion in nano-sized rutile TiO2 by impedance spectroscopy
    Bach, S.
    Pereira-Ramos, J. P.
    Willman, P.
    [J]. ELECTROCHIMICA ACTA, 2010, 55 (17) : 4952 - 4959
  • [2] THE DETERMINATION OF PORE VOLUME AND AREA DISTRIBUTIONS IN POROUS SUBSTANCES .1. COMPUTATIONS FROM NITROGEN ISOTHERMS
    BARRETT, EP
    JOYNER, LG
    HALENDA, PP
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1951, 73 (01) : 373 - 380
  • [3] Protonated titanates and TiO2 nanostructured materials:: Synthesis, properties, and applications
    Bavykin, Dmitry V.
    Friedrich, Jens M.
    Walsh, Frank C.
    [J]. ADVANCED MATERIALS, 2006, 18 (21) : 2807 - 2824
  • [4] Graphene-wrapped TiO2 hollow structures with enhanced lithium storage capabilities
    Chen, Jun Song
    Wang, Zhiyu
    Dong, Xiao Chen
    Chen, Peng
    Lou, Xiong Wen
    [J]. NANOSCALE, 2011, 3 (05) : 2158 - 2161
  • [5] Carbon-supported ultra-thin anatase TiO2 nanosheets for fast reversible lithium storage
    Chen, Jun Song
    Liu, Hao
    Qiao, Shi Zhang
    Lou, Xiong Wen
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (15) : 5687 - 5692
  • [6] Anatase TiO2 nanosheet: An ideal host structure for fast and efficient lithium insertion/extraction
    Chen, Jun Song
    Lou, Xiong Wen
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (12) : 2332 - 2335
  • [7] High-Yield Gas-Liquid Interfacial Synthesis of Highly Dispersed Fe3O4 Nanocrystals and Their Application in Lithium-Ion Batteries
    Cui, Zhi-Min
    Hang, Ling-Yan
    Song, Wei-Guo
    Guo, Yu-Guo
    [J]. CHEMISTRY OF MATERIALS, 2009, 21 (06) : 1162 - 1166
  • [8] Electrochemical performance of mixed crystallographic phase nanotubes and nanosheets of titania and titania-carbon/silver composites for lithium-ion batteries
    Das, Shyamal K.
    Bhattacharyya, Aninda J.
    [J]. MATERIALS CHEMISTRY AND PHYSICS, 2011, 130 (1-2) : 569 - 576
  • [9] Graphene-supported anatase TiO2 nanosheets for fast lithium storage
    Ding, Shujiang
    Chen, Jun Song
    Luan, Deyan
    Boey, Freddy Yin Chiang
    Madhavi, Srinivasan
    Lou, Xiong Wen
    [J]. CHEMICAL COMMUNICATIONS, 2011, 47 (20) : 5780 - 5782
  • [10] Preparation of graphene/TiO2 anode materials for lithium-ion batteries by a novel precipitation method
    Ding, Yan-Huai
    Zhang, Ping
    Ren, Hu-Ming
    Zhuo, Qin
    Yang, Zhong-Mei
    Jiang, Yong
    [J]. MATERIALS RESEARCH BULLETIN, 2011, 46 (12) : 2403 - 2407