Decision region approximation by polynomials or neural networks

被引:6
作者
Blackmore, KL [1 ]
Williamson, RC [1 ]
Mareels, IMY [1 ]
机构
[1] AUSTRALIAN NATL UNIV,DEPT ENGN,CANBERRA,ACT 0200,AUSTRALIA
基金
澳大利亚研究理事会;
关键词
classification; decision region; neural networks; polynomials; rate of approximation;
D O I
10.1109/18.568700
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We give degree of approximation results for decision regions which are defined by polynomial and neural network parametrizations. The volume of the misclassified region is used to measure the approximation error, and results for the degree of L-1 approximation of functions are used, For polynomial parametrizations, we show that the degree of approximation is at least 1, whereas for neural network parametrizations we prove the slightly weaker result that the degree of approximation is at least r, where r can be any number in the open interval (0, 1).
引用
收藏
页码:903 / 907
页数:5
相关论文
共 25 条
[1]  
[Anonymous], 1966, APPROXIMATION FUNCTI
[2]   UNIVERSAL APPROXIMATION BOUNDS FOR SUPERPOSITIONS OF A SIGMOIDAL FUNCTION [J].
BARRON, AR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (03) :930-945
[3]  
BENGTSSON A, 1991, IEEE T PATTERN ANAL, V31, P85
[4]  
Berger M, 1988, DIFFERENTIAL GEOMETR
[5]  
BLACKMORE K, 1996, J MATH SYST ESTIM CO, V6, P129
[6]   APPROXIMATION OF C-INFINITY-FUNCTIONS WITHOUT CHANGING THEIR ZERO-SET [J].
BROGLIA, F ;
TOGNOLI, A .
ANNALES DE L INSTITUT FOURIER, 1989, 39 (03) :611-632
[7]  
Cheney E. W., 1982, INTRO APPROXIMATION
[8]  
DARKEN C, 1993, P 6 ACM C COMP LEARN, P103
[9]  
Dudley R. M., 1974, Journal of Approximation Theory, V10, P227, DOI 10.1016/0021-9045(74)90120-8
[10]   UNIVERSAL APPROXIMATION OF AN UNKNOWN MAPPING AND ITS DERIVATIVES USING MULTILAYER FEEDFORWARD NETWORKS [J].
HORNIK, K ;
STINCHCOMBE, M ;
WHITE, H .
NEURAL NETWORKS, 1990, 3 (05) :551-560