PRROC: computing and visualizing precision-recall and receiver operating characteristic curves in R

被引:257
作者
Grau, Jan [1 ,2 ]
Grosse, Ivo [1 ,2 ,3 ]
Keilwagen, Jens [4 ]
机构
[1] Univ Halle Wittenberg, Inst Comp Sci, D-06108 Halle, Saale, Germany
[2] Univ Halle Wittenberg, Univ Zentrum Informat, D-06108 Halle, Saale, Germany
[3] German Ctr Integrat Biodivers Res iDiv, Leipzig, Germany
[4] Fed Res Ctr Cultivated Plants, JKI, Inst Biosafety Plant Biotechnol, Quedlinburg, Germany
关键词
D O I
10.1093/bioinformatics/btv153
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Precision-recall (PR) and receiver operating characteristic (ROC) curves are valuable measures of classifier performance. Here, we present the R-package PRROC, which allows for computing and visualizing both PR and ROC curves. In contrast to available R-packages, PRROC allows for computing PR and ROC curves and areas under these curves for soft-labeled data using a continuous interpolation between the points of PR curves. In addition, PRROC provides a generic plot function for generating publication-quality graphics of PR and ROC curves.
引用
收藏
页码:2595 / 2597
页数:3
相关论文
共 8 条
[1]  
[Anonymous], 2006, P 23 INT C MACHINE L, DOI DOI 10.1145/1143844.1143874
[2]  
Boyd Kendrick, 2013, Machine Learning and Knowledge Discovery in Databases. European Conference, ECML PKDD 2013. Proceedings: LNCS 8190, P451, DOI 10.1007/978-3-642-40994-3_29
[3]  
Davis J, 2005, 19TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-05), P677
[4]   A general approach for discriminative de novo motif discovery from high-throughput data [J].
Grau, Jan ;
Posch, Stefan ;
Grosse, Ivo ;
Keilwagen, Jens .
NUCLEIC ACIDS RESEARCH, 2013, 41 (21) :e197
[5]   Area under Precision-Recall Curves for Weighted and Unweighted Data [J].
Keilwagen, Jens ;
Grosse, Ivo ;
Grau, Jan .
PLOS ONE, 2014, 9 (03)
[6]   Multi-dimensional classification of GABAergic interneurons with Bayesian network-modeled label uncertainty [J].
Mihaljevic, Bojan ;
Bielza, Concha ;
Benavides-Piccione, Ruth ;
DeFelipe, Javier ;
Larranaga, Pedro .
FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2014, 8
[7]   pROC: an open-source package for R and S plus to analyze and compare ROC curves [J].
Robin, Xavier ;
Turck, Natacha ;
Hainard, Alexandre ;
Tiberti, Natalia ;
Lisacek, Frederique ;
Sanchez, Jean-Charles ;
Mueller, Markus .
BMC BIOINFORMATICS, 2011, 12
[8]   ROCR: visualizing classifier performance in R [J].
Sing, T ;
Sander, O ;
Beerenwinkel, N ;
Lengauer, T .
BIOINFORMATICS, 2005, 21 (20) :3940-3941