Inclusion of explicit electron-proton correlation in the nuclear-electronic orbital approach using Gaussian-type geminal functions

被引:70
作者
Chakraborty, Arindam [1 ]
Pak, Michael V. [1 ]
Hammes-Schiffer, Sharon [1 ]
机构
[1] Penn State Univ, Dept Chem, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.2943144
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The nuclear-electronic orbital explicitly correlated Hartree-Fock (NEO-XCHF) approach for including electron-proton correlation in mixed nuclear-electronic wavefunctions is presented. A general ansatz for the nuclear-electronic wavefunction that includes explicit dependence on the nuclear-electronic distances with Gaussian-type geminal functions is proposed. Based on this ansatz, expressions are derived for the total energy and the electronic and nuclear Fock operators for multielectron systems. The explicit electron-proton correlation is incorporated directly into the self-consistent-field procedure for optimizing the nuclear-electronic wavefunction. This approach is computationally practical for many-electron systems because only a relatively small number of nuclei are treated quantum mechanically, and only electron-proton correlation is treated explicitly. Electron-electron correlation can be included by combining the NEO-XCHF approach with perturbation theory, density functional theory, and multiconfigurational methods. Previous nuclear-electronic orbital-based methods produce nuclear densities that are too localized, resulting in abnormally high stretching frequencies and inaccuracies in other properties relying on these densities. The application of the NEO-XCHF approach to the [He-H-He](+) model system illustrates that this approach includes the significant electron-proton correlation, thereby leading to an accurate description of the nuclear density. The agreement between the proton densities obtained with the NEO-XCHF and grid-based methods validates the underlying theory and the implementation of the NEO-XCHF method. (c) 2008 American Institute of Physics.
引用
收藏
页数:13
相关论文
共 97 条
[1]   GAUSSIAN GEMINAL BASIS SET OPTIMIZATION WITH CRUDE SCF REFERENCE STATE [J].
ADAMOWICZ, L ;
SADLEJ, AJ .
CHEMICAL PHYSICS LETTERS, 1977, 48 (02) :305-310
[2]  
[Anonymous], 1989, GROUP THEORY ITS APP
[3]   The electron and nuclear orbitals model: current challenges and future prospects [J].
Bochevarov, AD ;
Valeev, EF ;
Sherrill, CD .
MOLECULAR PHYSICS, 2004, 102 (01) :111-123
[4]   THE INTEGRAL FORMULAE FOR THE VARIATIONAL SOLUTION OF THE MOLECULAR MANY-ELECTRON WAVE EQUATION IN TERMS OF GAUSSIAN FUNCTIONS WITH DIRECT ELECTRONIC CORRELATION [J].
BOYS, SF .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1960, 258 (1294) :402-411
[5]   ELECTRONIC WAVE FUNCTIONS .1. A GENERAL METHOD OF CALCULATION FOR THE STATIONARY STATES OF ANY MOLECULAR SYSTEM [J].
BOYS, SF .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1950, 200 (1063) :542-554
[6]   NEW EFFECTIVE STRATEGY OF GENERATING GAUSSIAN-TYPE GEMINAL BASIS-SETS FOR CORRELATION-ENERGY CALCULATIONS [J].
BUKOWSKI, R ;
JEZIORSKI, B ;
SZALEWICZ, K .
JOURNAL OF CHEMICAL PHYSICS, 1994, 100 (02) :1366-1374
[7]   Analytic first-order properties from explicitly correlated many-body perturbation theory and Gaussian geminal basis [J].
Bukowski, R ;
Jeziorski, B ;
Szalewicz, K .
JOURNAL OF CHEMICAL PHYSICS, 1998, 108 (19) :7946-7958
[8]   Non-Born-Oppenheimer calculations of atoms and molecules [J].
Cafiero, M ;
Bubin, S ;
Adamowicz, L .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2003, 5 (08) :1491-1501
[9]   MANY-ELECTRON EXPLICITLY CORRELATED GAUSSIAN FUNCTIONS .2. GROUND-STATE OF THE HELIUM MOLECULAR ION HE-2(+) [J].
CENCEK, W ;
RYCHLEWSKI, J .
JOURNAL OF CHEMICAL PHYSICS, 1995, 102 (06) :2533-2538
[10]   MANY-ELECTRON EXPLICITLY CORRELATED GAUSSIAN FUNCTIONS .1. GENERAL-THEORY AND TEST-RESULTS [J].
CENCEK, W ;
RYCHLEWSKI, J .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (02) :1252-1261