Peptide-TiO2 surface interaction in solution by ab initio and molecular dynamics simulations

被引:105
作者
Carravetta, V [1 ]
Monti, S [1 ]
机构
[1] Ist Proc Chim Fis, Area Ric, I-56124 Pisa, Italy
关键词
D O I
10.1021/jp056760j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ab initio periodic calculations and classical molecular dynamics (MID) simulations were performed to investigate the adsorption mode of alanine and a number of short peptides, in particular two peptides, alanine-glutamic acid and alanine-lysine, taken as model systems for the ionic self-complementary oligopeptide EAK16-II, onto TiO2 (110) rutile surface, and their conformational characteristics upon adsorption. The atomistic description of the rutile surface and its interactions with water and peptide molecules were based on ab initio calculations, the TIP3P water model, the AMBER force field, and available parameters. By comparison with ab initio calculations, it is shown that MD simulations of reasonable duration can describe the main characteristics of the peptide-TiO2 surface interaction in solution, at least on a short time scale. Atom-atom radial distribution functions, atom-surface distances, backbone and side chain dihedral angle distributions, C, and peptide-surface interaction energies have been analyzed. Once adsorbed onto the TiO2 rutile surface by C a bidentate interaction of both carboxyl oxygens with two adiacent Ti atoms, the small peptide studied showed a clear propensity to remain there and undergo relatively limited hinge-bending motions.
引用
收藏
页码:6160 / 6169
页数:10
相关论文
共 53 条
[1]  
*ACC INC, 1999, CER2 MOD ENV VERS 4
[2]  
Allen M. P., 1990, COMPUTER SIMULATION
[3]   Conformational behavior of ionic self-complementary peptides [J].
Altman, M ;
Lee, P ;
Rich, A ;
Zhang, SG .
PROTEIN SCIENCE, 2000, 9 (06) :1095-1105
[4]   Adsorption of water on the TiO2 (rutile) (110) surface:: A comparison of periodic and embedded cluster calculations [J].
Bandura, AV ;
Sykes, DG ;
Shapovalov, V ;
Troung, TN ;
Kubicki, JD ;
Evarestov, RA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (23) :7844-7853
[5]   Derivation of force field parameters for TiO2-H2O systems from a initio calculations [J].
Bandura, AV ;
Kubicki, JD .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (40) :11072-11081
[6]   Anatase and rutile surfaces with adsorbates representative of acidic and basic conditions [J].
Barnard, AS ;
Zapol, P ;
Curtiss, LA .
SURFACE SCIENCE, 2005, 582 (1-3) :173-188
[7]   Molecular dynamics study of the influence of solid interfaces on poly(ethylene oxide) structure and dynamics [J].
Borodin, O ;
Smith, GD ;
Bandyopadhyaya, R ;
Byutner, E .
MACROMOLECULES, 2003, 36 (20) :7873-7883
[8]   CALCULATION OF SMALL MOLECULAR INTERACTIONS BY DIFFERENCES OF SEPARATE TOTAL ENERGIES - SOME PROCEDURES WITH REDUCED ERRORS [J].
BOYS, SF ;
BERNARDI, F .
MOLECULAR PHYSICS, 1970, 19 (04) :553-&
[9]   A 2ND GENERATION FORCE-FIELD FOR THE SIMULATION OF PROTEINS, NUCLEIC-ACIDS, AND ORGANIC-MOLECULES [J].
CORNELL, WD ;
CIEPLAK, P ;
BAYLY, CI ;
GOULD, IR ;
MERZ, KM ;
FERGUSON, DM ;
SPELLMEYER, DC ;
FOX, T ;
CALDWELL, JW ;
KOLLMAN, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (19) :5179-5197
[10]   The surface science of titanium dioxide [J].
Diebold, U .
SURFACE SCIENCE REPORTS, 2003, 48 (5-8) :53-229