On matching conditions in the WKB method

被引:21
作者
Popov, VS [1 ]
Karnakov, BM [1 ]
Mur, VD [1 ]
机构
[1] MOSCOW ENGN PHYS INST,MOSCOW 115409,RUSSIA
关键词
Compendex;
D O I
10.1016/0375-9601(95)00909-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The modified matching conditions for quasiclassical wave functions on both sides of a turning point for the radial Schrodinger equation have been obtained. They differ significantly from the usual Kramers condition which holds for the one-dimensional case. Namely, the ratio C-2/C-1 in the subbarrier and the classical allowed regions is not a universal constant (C-2/C-1 = 1/2, as usual), but depends on the values of the orbital angular momentum I, energy E and on the behaviour of the potential V(r) at r --> 0. The comparison with exact and numerical solutions of the Schrodinger equation shows that the modified matching conditions not only make the quasiclassical approximation in the subbarrier region asymptotically exact within the n --> infinity limit, but also considerably enhances its accuracy even in the case of small quantum numbers, n similar to 1. The power-law, funnel and short-range potentials are considered in detail.
引用
收藏
页码:402 / 408
页数:7
相关论文
共 12 条
[1]  
BADALYAN AM, 1987, YAD FIZ, V46, P226
[2]  
Curtis A. R., 1964, COULOMB WAVE FUNCTIO
[3]   SPECTRUM OF CHARMED QUARK-ANTIQUARK BOUND-STATES [J].
EICHTEN, E ;
GOTTFRIED, K ;
KINOSHITA, T ;
KOGUT, J ;
LANE, KD ;
YAN, TM .
PHYSICAL REVIEW LETTERS, 1975, 34 (06) :369-372
[4]   CHARMONIUM - MODEL [J].
EICHTEN, E ;
GOTTFRIED, K ;
KINOSHITA, T ;
LANE, KD ;
YAN, TM .
PHYSICAL REVIEW D, 1978, 17 (11) :3090-3717
[5]   2 NOTES ON PHASE-INTEGRAL METHODS [J].
FURRY, WH .
PHYSICAL REVIEW, 1947, 71 (06) :360-371
[6]  
Heading J., 1962, An Introduction to Phase Integral Methods
[7]  
KARNAKOV BM, 1994, ZH EKSP TEOR FIZ+, V106, P976
[8]   Wave mechanics and half-integral quantisation [J].
Kramers, HA .
ZEITSCHRIFT FUR PHYSIK, 1926, 39 (10/11) :828-840
[9]  
Landau L. D., 1977, QUANTUM MECH, DOI DOI 10.1016/B978-0-08-020940-1.50014-1
[10]   On the connection formulas and the solutions of the wave equation [J].
Langer, RE .
PHYSICAL REVIEW, 1937, 51 (08) :0669-0676