Confined Volume Change in Sn-Co-C Ternary Tube-in-Tube Composites for High-Capacity and Long-Life Lithium Storage

被引:93
作者
Gu, Yan [1 ]
Wu, Fendan [1 ]
Wang, Yong [1 ]
机构
[1] Shanghai Univ, Dept Chem Engn, Sch Environm & Chem Engn, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
anodes; carbon nanotubes; lithium-ion batteries; tube-in-tube nanostructures; NEGATIVE ELECTRODE MATERIALS; TRANSITION METAL-CARBON; ION BATTERY ELECTRODE; AT-CNT NANOSTRUCTURES; ELECTROCHEMICAL PERFORMANCE; ANODE MATERIAL; COBALT; NANOTUBES; SITU;
D O I
10.1002/adfm.201202136
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
All high capacity Li-alloy anodes for Li-ion battery suffer from enormous volume expansion and extraction during the lithium-ion insertion and extraction process. A Sn-Co-CNT@CNT ternary tube-in-tube nanostructure is prepared by an in situ template technique and shows perfect structure suitability to solve the critical volume change problem. The morphology, size, and quantity of the filled CNT-supported Sn-Co nanoparticles can be also tuned by adjusting the experimental conditions to achieve optimal electrochemical performances. The tube-in-tube product exhibits larger-than-theoretical reversible capacities of 890811 mA h g1 at 0.1C in 200 cycles and excellent rate capability and high-rate cycling stability. The excellent electrochemical performance is mainly attributed to the confined volume change in the nanotube cavities and ensured permanent electrical connectivity of the immobilized Sn-Co anodes.
引用
收藏
页码:893 / 899
页数:7
相关论文
共 37 条
[1]   Mass production of uniform-sized nanoporous silicon nanowire anodes via block copolymer lithography [J].
Bang, Byoung Man ;
Kim, Hyunjung ;
Lee, Jung-Pil ;
Cho, Jaephil ;
Park, Soojin .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3395-3399
[2]  
Bruce P.G., 2011, ENERG ENVIRON SCI, V4, P3287
[3]   Carbon nanotubule membranes for electrochemical energy storage and production [J].
Che, GL ;
Lakshmi, BB ;
Fisher, ER ;
Martin, CR .
NATURE, 1998, 393 (6683) :346-349
[4]   Reversible Lithium-Ion Storage in Silver-Treated Nanoscale Hollow Porous Silicon Particles [J].
Chen, Dongyun ;
Mei, Xiao ;
Ji, Ge ;
Lu, Meihua ;
Xie, Jianping ;
Lu, Jianmei ;
Lee, Jim Yang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (10) :2409-2413
[5]   Preparation and electrochemical performance of Sn-Co-C composite as anode material for Li-ion batteries [J].
Chen, Zhongxue ;
Qian, Jiangfeng ;
Ai, Xinping ;
Cao, Yuhang ;
Yang, Hanxi .
JOURNAL OF POWER SOURCES, 2009, 189 (01) :730-732
[6]   Characterization of amorphous and crystalline tin-cobalt anodes [J].
Fan, Quan ;
Chupas, Peter J. ;
Whittingham, M. Stanley .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2007, 10 (12) :A274-A278
[7]   Comparison of mechanically alloyed and sputtered tin-cobalt-carbon as an anode material for lithium-ion batteries [J].
Ferguson, P. P. ;
Todd, A. D. W. ;
Dahn, J. R. .
ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (01) :25-31
[8]   Importance of nanostructure for high capacity negative electrode materials for Li-ion batteries [J].
Ferguson, P. P. ;
Todd, A. D. W. ;
Dahn, J. R. .
ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (08) :1041-1044
[9]   Studies of tin-transition metal-carbon and tin-cobalt-transition metal-carbon negative electrode materials prepared by mechanical attrition [J].
Ferguson, P. P. ;
Martine, M. L. ;
George, A. E. ;
Dahn, J. R. .
JOURNAL OF POWER SOURCES, 2009, 194 (02) :794-800
[10]   Strain Anisotropies and Self-Limiting Capacities in Single-Crystalline 3D Silicon Microstructures: Models for High Energy Density Lithium-Ion Battery Anodes [J].
Goldman, Jason L. ;
Long, Brandon R. ;
Gewirth, Andrew A. ;
Nuzzo, Ralph G. .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (13) :2412-2422