Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation

被引:100
作者
Wang, Q. Q. [2 ]
Zhu, J. Y. [1 ]
Gleisner, R. [1 ]
Kuster, T. A. [1 ]
Baxa, U. [3 ]
McNeil, S. E. [4 ]
机构
[1] US Forest Serv, Forest Prod Lab, USDA, Madison, WI 53705 USA
[2] S China Univ Technol, State Key Lab Pulp & Paper Engn, Guangzhou, Guangdong, Peoples R China
[3] NCI, Electron Microscopy Lab, Adv Technol Program, SAIC Frederick Inc, Frederick, MD 21702 USA
[4] NCI, Nanotechnol Characterizat Lab, Adv Technol Program, SAIC Frederick Inc, Frederick, MD 21702 USA
基金
美国国家卫生研究院;
关键词
Cellulose nanofibrils (CNF); Morphology; Mechanical fibrillation/grinding; Fiber/fibril network; TEM imaging; Nanowhisker; HOMOGENIZATION; NANOCOMPOSITES; FIBERS;
D O I
10.1007/s10570-012-9745-x
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
This study reports the production of cellulose nanofibrils (CNF) from a bleached eucalyptus pulp using a commercial stone grinder. Scanning electronic microscopy and transmission electronic microscopy imaging were used to reveal morphological development of CNF at micro and nano scales, respectively. Two major structures were identified: (1) highly kinked, naturally helical, and untwisted fibrils that serve as backbones of CNF networks, and (2) entangled, less distinctively kinked (or curled) and twisted "soft looking" nanofibrils. These two major structures appeared in different features of CNF network such as "trees", "net", "flower", single fibril, etc. Prolonged fibrillation can break the nanofibrils into nanowhiskers from the untwisted fibrils with high crystallinity. Energy input for mechanical fibrillation is on the order of 5-30 kWh/kg. The gradual reduction in network size of CNF with time may be used to fractionate CNF.
引用
收藏
页码:1631 / 1643
页数:13
相关论文
共 29 条
[1]   Cellulose I crystallinity determination using FT-Raman spectroscopy: univariate and multivariate methods [J].
Agarwal, Umesh P. ;
Reiner, Richard S. ;
Ralph, Sally A. .
CELLULOSE, 2010, 17 (04) :721-733
[2]   A technique for production of nanocrystalline cellulose with a narrow size distribution [J].
Bai, Wen ;
Holbery, James ;
Li, Kaichang .
CELLULOSE, 2009, 16 (03) :455-465
[3]  
Dekker J, 2003, 7 PIRA INT REF C STO
[4]   Review: current international research into cellulose nanofibres and nanocomposites [J].
Eichhorn, S. J. ;
Dufresne, A. ;
Aranguren, M. ;
Marcovich, N. E. ;
Capadona, J. R. ;
Rowan, S. J. ;
Weder, C. ;
Thielemans, W. ;
Roman, M. ;
Renneckar, S. ;
Gindl, W. ;
Veigel, S. ;
Keckes, J. ;
Yano, H. ;
Abe, K. ;
Nogi, M. ;
Nakagaito, A. N. ;
Mangalam, A. ;
Simonsen, J. ;
Benight, A. S. ;
Bismarck, A. ;
Berglund, L. A. ;
Peijs, T. .
JOURNAL OF MATERIALS SCIENCE, 2010, 45 (01) :1-33
[5]  
Franson M. H., 1985, STANDARD METHODS EXA, P532
[6]   Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications [J].
Habibi, Youssef ;
Lucia, Lucian A. ;
Rojas, Orlando J. .
CHEMICAL REVIEWS, 2010, 110 (06) :3479-3500
[7]  
Hartman R. R., 1985, 8 FUND RES S PAP RAW, P413
[8]   Cellulose nanopaper structures of high toughness [J].
Henriksson, Marielle ;
Berglund, Lars A. ;
Isaksson, Per ;
Lindstrom, Tom ;
Nishino, Takashi .
BIOMACROMOLECULES, 2008, 9 (06) :1579-1585
[9]   Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites [J].
Iwamoto, S. ;
Nakagaito, A. N. ;
Yano, H. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2007, 89 (02) :461-466
[10]   The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics [J].
Iwamoto, Shinichiro ;
Abe, Kentaro ;
Yano, Hiroyuki .
BIOMACROMOLECULES, 2008, 9 (03) :1022-1026