Cyborg cells: functionalisation of living cells with polymers and nanomaterials

被引:175
作者
Fakhrullin, Rawil F. [1 ]
Zamaleeva, Alsu I. [1 ]
Minullina, Renata T. [1 ]
Konnova, Svetlana A. [1 ]
Paunov, Vesselin N. [2 ]
机构
[1] Kazan Idel Buye Volga Reg Fed Univ, Dept Microbiol, Fac Biol & Soil, Biomat & Nanomat Grp, Kazan 420008, Russia
[2] Univ Hull, Dept Chem, Surfactant & Colloid Grp, Kingston Upon Hull HU6 7RX, N Humberside, England
关键词
POLYELECTROLYTE SHELLS; BIOLOGICAL TEMPLATES; GOLD NANOPARTICLES; INDIVIDUAL CELLS; YEAST-CELLS; ENCAPSULATION; PROTECTION; NANOENCAPSULATION; FABRICATION; COMPOSITES;
D O I
10.1039/c2cs15264a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Living cells interfaced with a range of polyelectrolyte coatings, magnetic and noble metal nanoparticles, hard mineral shells and other complex nanomaterials can perform functions often completely different from their original specialisation. Such "cyborg cells" are already finding a range of novel applications in areas like whole cell biosensors, bioelectronics, toxicity microscreening, tissue engineering, cell implant protection and bioanalytical chemistry. In this tutorial review, we describe the development of novel methods for functionalisation of cells with polymers and nanoparticles and comment on future advances in this technology in the light of other literature approaches. We review recent studies on the cell viability and function upon direct deposition of nanoparticles, coating with polyelectrolytes, polymer assisted assembly of nanomaterials and hard shells on the cell surface. The cell toxicity issues are considered for many practical applications in terms of possible adverse effects of the deposited polymers, polyelectrolytes and nanoparticles on the cell surface.
引用
收藏
页码:4189 / 4206
页数:18
相关论文
共 75 条
[1]   Clay nanotubes for corrosion inhibitor encapsulation: release control with end stoppers [J].
Abdullayev, Elshad ;
Lvov, Yuri .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (32) :6681-6687
[2]   Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum [J].
Ahmad, A ;
Mukherjee, P ;
Senapati, S ;
Mandal, D ;
Khan, MI ;
Kumar, R ;
Sastry, M .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2003, 28 (04) :313-318
[3]   Electrostatic layer-by-layer nanoassembly on biological microtemplates: Platelets [J].
Ai, H ;
Fang, M ;
Jones, SA ;
Lvov, YM .
BIOMACROMOLECULES, 2002, 3 (03) :560-564
[4]   M13 Bacteriophage as a Biological Scaffold for Magnetically-Recoverable Metal Nanowire Catalysts: Combining Specific and Nonspecific Interactions To Design Multifunctional Nanocomposites [J].
Avery, Kendra N. ;
Schaak, Janell E. ;
Schaak, Raymond E. .
CHEMISTRY OF MATERIALS, 2009, 21 (11) :2176-2178
[5]   Encapsulation of Bacterial Spores in Nanoorganized Polyelectrolyte Shells [J].
Balkundi, Shantanu S. ;
Veerabadran, Nalinkanth G. ;
Eby, D. Matthew ;
Johnson, Glenn R. ;
Lvov, Yuri M. .
LANGMUIR, 2009, 25 (24) :14011-14016
[6]   Deposition of CTAB-terminated nanorods on bacteria to form highly conducting hybrid systems [J].
Berry, V ;
Gole, A ;
Kundu, S ;
Murphy, CJ ;
Saraf, RF .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (50) :17600-17601
[7]   Self-assembly of nanoparticles on live bacterium: An avenue to fabricate electronic devices [J].
Berry, V ;
Saraf, RF .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (41) :6668-6673
[8]   Highly selective, electrically conductive monolayer of nanoparticles on live bacteria [J].
Berry, V ;
Rangaswamy, S ;
Saraf, RF .
NANO LETTERS, 2004, 4 (05) :939-942
[9]   Fungal templates for noble-metal nanoparticles and their application in catalysis [J].
Bigall, Nadja C. ;
Reitzig, Manuela ;
Naumann, Wolfgang ;
Simon, Paul ;
van Pee, Karl-Heinz ;
Eychmueller, Alexander .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (41) :7876-7879
[10]   Directed assembly of yeast cells into living yeastosomes by microbubble templating [J].
Brandy, Marie-Laure ;
Cayre, Olivier J. ;
Fakhrullin, Rawil F. ;
Velev, Orlin D. ;
Paunov, Vesselin N. .
SOFT MATTER, 2010, 6 (15) :3494-3498