Gene replacement by homologous recombination in plants

被引:84
作者
Puchta, H [1 ]
机构
[1] Inst Pflanzengenet & Kulturpflanzenforsch, D-06466 Gatersleben, Germany
关键词
chimeric oligonucleotides; double-strand break repair; gene targeting; illegitimate recombination; Physcomitrella patens; site-specific integration;
D O I
10.1023/A:1013761821763
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
After the elucidation of the sequence of the yeast genome a major effort was started to elucidate the biological function of all open reading frames of this organisms by targeted gene replacement via homologous recombination. The establishment of the complete sequence of the genome of Arabidopsis thaliana would principally allow a similar approach. However, over the past dozen years all attempts to establish an efficient gene targeting technique in flowering plants were in the end not successful. In contrast, in Physcomitrella patens an efficient gene targeting procedure has been set up, making the moss a valuable model system for plant molecular biologists. But also for flowering plants recently several new approaches - some of them based on the availability of the genomic sequence of Arabidopsis - were initiated that might finally result on the set up of a general applicable technique. Beside the production of hyper-recombinogenic plants either via expression or suppression of specific gene functions or via undirected mutagenesis, the application of chimeric oligonucleotides might result in major progress.
引用
收藏
页码:173 / 182
页数:10
相关论文
共 80 条
[1]   The bryophyte Physcomitrella patens replicates extrachromosomal transgenic elements [J].
Ashton, NW ;
Champagne, CEM ;
Weiler, T ;
Verkoczy, LK .
NEW PHYTOLOGIST, 2000, 146 (03) :391-402
[2]   A tool for functional plant genomics:: Chimeric RNA/DNA oligonucleotides cause in vivo gene-specific mutations [J].
Beetham, PR ;
Kipp, PB ;
Sawycky, XL ;
Arntzen, CJ ;
May, GD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (15) :8774-8778
[3]   Plant meiosis: the means to 1N [J].
Bhatt, AM ;
Canales, C ;
Dickinson, HG .
TRENDS IN PLANT SCIENCE, 2001, 6 (03) :114-121
[4]   TRANSKINGDOM T-DNA TRANSFER FROM AGROBACTERIUM-TUMEFACIENS TO SACCHAROMYCES-CEREVISIAE [J].
BUNDOCK, P ;
DENDULKRAS, A ;
BEIJERSBERGEN, A ;
HOOYKAAS, PJJ .
EMBO JOURNAL, 1995, 14 (13) :3206-3214
[5]   MITOTIC CROSSING-OVER IN A HIGHER PLANT [J].
CARLSON, PS .
GENETICAL RESEARCH, 1974, 24 (01) :109-112
[6]   Targeted gene repair directed by the chimeric RNA/DNA oligonucleotide in a mammalian cell-free extract [J].
Cole-Strauss, A ;
Gamper, H ;
Holloman, WK ;
Muñoz, M ;
Cheng, N ;
Kmiec, EB .
NUCLEIC ACIDS RESEARCH, 1999, 27 (05) :1323-1330
[7]   Correction of the mutation responsible for sickle cell anemia by an RNA-DNA oligonucleotide [J].
ColeStrauss, A ;
Yoon, KG ;
Xiang, YF ;
Byrne, BC ;
Rice, MC ;
Gryn, J ;
Holloman, WK ;
Kmiec, EB .
SCIENCE, 1996, 273 (5280) :1386-1389
[8]   Mosses as model systems [J].
Cove, DJ ;
Knight, CD ;
Lamparter, T .
TRENDS IN PLANT SCIENCE, 1997, 2 (03) :99-105
[9]   TARGETED CORRECTION OF A MUTANT HPRT GENE IN MOUSE EMBRYONIC STEM-CELLS [J].
DOETSCHMAN, T ;
GREGG, RG ;
MAEDA, N ;
HOOPER, ML ;
MELTON, DW ;
THOMPSON, S ;
SMITHIES, O .
NATURE, 1987, 330 (6148) :576-578
[10]   Mouse RAD54 affects DNA double-strand break repair and sister chromatid exchange [J].
Dronkert, MLG ;
Beverloo, HB ;
Johnson, RD ;
Hoeijmakers, JHJ ;
Jasin, M ;
Kanaar, R .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (09) :3147-3156