Developmental and Osteoarthritic Changes in Col6a1-Knockout Mice Biomechanics of Type VI Collagen in the Cartilage Pericellular Matrix

被引:148
作者
Alexopoulos, Leonidas G. [1 ]
Youn, Inchan [1 ]
Bonaldo, Paolo [2 ]
Guilak, Farshid [1 ]
机构
[1] Duke Univ, Med Ctr, Durham, NC 27710 USA
[2] Univ Padua, Padua, Italy
来源
ARTHRITIS AND RHEUMATISM | 2009年 / 60卷 / 03期
关键词
CANINE TIBIAL CARTILAGE; POSTERIOR LONGITUDINAL LIGAMENT; FINITE-ELEMENT MODEL; ARTICULAR-CARTILAGE; EXTRACELLULAR-MATRIX; MECHANICAL-PROPERTIES; 3-DIMENSIONAL MORPHOLOGY; MICROPIPETTE ASPIRATION; CHONDROCYTE ADHESION; STRAIN AMPLIFICATION;
D O I
10.1002/art.24293
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective. Chondrocytes, the sole cell type in articular cartilage, maintain the extracellular matrix (ECM) through a homeostatic balance of anabolic and catabolic activities that are influenced by genetic factors, soluble mediators, and biophysical factors such as mechanical stress. Chondrocytes are encapsulated by a narrow tissue region termed the "pericellular matrix" (PCM), which in normal cartilage is defined by the exclusive presence of type VI collagen. Because the PCM completely surrounds each cell, it has been hypothesized that it serves as a filter or transducer for biochemical and/or biomechanical signals from the cartilage ECM. The present study was undertaken to investigate whether lack of type VI collagen may affect the development and biomechanical function of the PCM and alter the mechanical environment of chondrocytes during joint loading. Methods. Col6a1(-/-) mice, which lack type VI collagen in their organs, were generated for use in these studies. At ages 1, 3, 6, and 11 months, bone mineral density (BMD) was measured, and osteoarthritic (OA) and developmental changes in the femoral head were evaluated histomorphometrically. Mechanical properties of articular cartilage from the hip joints of 1-month-old Col6a1(-/-). Col6a1(+/-), and Col6a1(+/+) mice were assessed using an electromechanical test system, and mechanical properties of the PCM were measured using the micropipette aspiration technique. Results. In Col6a1(-/-) and Col6a1(+/-) mice the PCM was structurally intact, but exhibited significantly reduced mechanical properties as compared with wildtype controls. With age, Col6a1(-/-) mice showed accelerated development of OA joint degeneration, as well as other musculoskeletal abnormalities such as delayed secondary ossification and reduced BMD. Conclusion. These findings suggest that type VI collagen has an important role in regulating the physiology of the synovial joint and provide indirect evidence that alterations in the mechanical environment of chondrocytes, due to either loss of PCM properties or Col6a1(-/-) -derived joint laxity, can lead to progression of OA.
引用
收藏
页码:771 / 779
页数:9
相关论文
共 76 条
[1]  
ADAMS JC, 1993, DEVELOPMENT, V117, P1183
[2]   The biomechanical role of the chondrocyte pericellular matrix in articular cartilage [J].
Alexopoulos, LG ;
Setton, LA ;
Guilak, F .
ACTA BIOMATERIALIA, 2005, 1 (03) :317-325
[3]   Osteoarthritic changes in the biphasic mechanical properties of the chondrocyte pericellular matrix in articular cartilage [J].
Alexopoulos, LG ;
Williams, GM ;
Upton, ML ;
Setton, LA ;
Guilak, F .
JOURNAL OF BIOMECHANICS, 2005, 38 (03) :509-517
[4]   Alterations in the mechanical properties of the human chondrocyte pericellular matrix with osteoarthritis [J].
Alexopoulos, LG ;
Haider, MA ;
Vail, TP ;
Guilak, F .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2003, 125 (03) :323-333
[5]   Collagen VI regulates normal and transformed mesenchymal cell proliferation in vitro [J].
Atkinson, JC ;
Ruhl, M ;
Becker, J ;
Ackermann, R ;
Schuppan, D .
EXPERIMENTAL CELL RESEARCH, 1996, 228 (02) :283-291
[6]   CELL ATTACHMENT PROPERTIES OF COLLAGEN TYPE-VI AND ARG-GLY-ASP DEPENDENT BINDING TO ITS ALPHA-2(VI) AND ALPHA-3(VI) CHAINS [J].
AUMAILLEY, M ;
MANN, K ;
VONDERMARK, H ;
TIMPL, R .
EXPERIMENTAL CELL RESEARCH, 1989, 181 (02) :463-474
[7]  
Ballock R. Tracy, 2003, Birth Defects Research, V69, P123, DOI 10.1002/bdrc.10014
[8]  
Benninghoff A., 1925, Z FR ZELLFORSCHUNG M, V2, P783, DOI [DOI 10.1007/BF00583443, 10.1007/BF00583443]
[9]  
BIDANSET DJ, 1992, J BIOL CHEM, V267, P5250
[10]   Collagen VI deficiency induces early onset myopathy in the mouse: an animal model for Bethlem myopathy [J].
Bonaldo, P ;
Braghetta, P ;
Zanetti, M ;
Piccolo, S ;
Volpin, D ;
Bressan, GM .
HUMAN MOLECULAR GENETICS, 1998, 7 (13) :2135-2140