The MADS-box gene DEFH28 from Antirrhinum is involved in the regulation of floral meristem identity and fruit development

被引:63
作者
Müller, BM [1 ]
Saedler, H [1 ]
Zachgo, S [1 ]
机构
[1] Max Planck Inst Zuchtungsforsch, D-50829 Cologne, Germany
关键词
MADS-box genes; Antirrhinum; flower development; valve differentiation; fruit dehiscence; FRUITFULL;
D O I
10.1046/j.1365-313X.2001.01139.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
DEFH28 is a novel MADS-box gene from Antirrhinum majus. Phylogenetic reconstruction indicates that it belongs to the SQUA-subfamily of MADS-box genes, Based on its expression pattern and the phenotype of transgenic plants it is predicted that DEFH28 exerts a dual function during flower development, namely control of meristem identity and fruit development. Firstly, DEFH28 is expressed in the inflorescence apical meristem and might control, together with SQUAMOSA (SQUA), floral meristem identity in Antirrhinum. Also, DEFH28 is sufficient to switch inflorescence shoot meristem to a floral fate in transgenic Arabidopsis thaliana plants. Secondly, DEFH28 is expressed in carpel walls, where it may regulate carpel wall differentiation and fruit maturation. Support for this later role comes from overexpression of DEFH28 throughout the silique in transgenic Arabidopsis plants where it altered the identity of the replum and valve margin cells so that they adopted a valve cell identity. This late aspect of the DEFH28 function is identical to the FRUITFULL (FUL) function of Arabidopsis as demonstrated in gain-of-function plants. FUL, like DEFH28, belongs to the SQUA-subfamily of MADS-box genes. DEFH28 most likely represents the ortholog of FUL. Promoter analysis shows that the control mechanism conferring a carpel wall specific expression has been conserved between Antirrhinum and Arabidopsis during evolution. Although the overall flower development between Antirrhinum and Arabidopsis is very similar, their carpels mature into different types of fruits: capsules and siliques, respectively. Therefore, it is suggested that the role of DEFH28 in control of carpel wall differentiation reflects a conserved molecular mechanism integrated into two very different carpel developmental pathways.
引用
收藏
页码:169 / 179
页数:11
相关论文
共 42 条
[1]   TERMINAL-FLOWER - A GENE AFFECTING INFLORESCENCE DEVELOPMENT IN ARABIDOPSIS-THALIANA [J].
ALVAREZ, J ;
GULI, CL ;
YU, XH ;
SMYTH, DR .
PLANT JOURNAL, 1992, 2 (01) :103-116
[2]  
BECHTOLD N, 1993, CR ACAD SCI III-VIE, V316, P1194
[3]   NEW PLANT BINARY VECTORS WITH SELECTABLE MARKERS LOCATED PROXIMAL TO THE LEFT T-DNA BORDER [J].
BECKER, D ;
KEMPER, E ;
SCHELL, J ;
MASTERSON, R .
PLANT MOLECULAR BIOLOGY, 1992, 20 (06) :1195-1197
[4]   Analysis of PEAM4, the pea AP1 functional homologue, supports a model for AP1-like genes controlling both floral meristem and floral organ identity in different plant species [J].
Berbel, A ;
Navarro, C ;
Ferrándiz, C ;
Cañas, LA ;
Madueño, F ;
Beltrán, JP .
PLANT JOURNAL, 2001, 25 (04) :441-451
[5]   COMPLEMENTARY FLORAL HOMEOTIC PHENOTYPES RESULT FROM OPPOSITE ORIENTATIONS OF A TRANSPOSON AT THE PLENA-LOCUS OF ANTIRRHINUM [J].
BRADLEY, D ;
CARPENTER, R ;
SOMMER, H ;
HARTLEY, N ;
COEN, E .
CELL, 1993, 72 (01) :85-95
[6]   Inflorescence commitment and architecture in Arabidopsis [J].
Bradley, D ;
Ratcliffe, O ;
Vincent, C ;
Carpenter, R ;
Coen, E .
SCIENCE, 1997, 275 (5296) :80-83
[7]   PLENA and FARINELLI:: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development [J].
Davies, B ;
Motte, P ;
Keck, E ;
Saedler, H ;
Sommer, H ;
Schwarz-Sommer, Z .
EMBO JOURNAL, 1999, 18 (14) :4023-4034
[8]   Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus [J].
Egea-Cortines, M ;
Saedler, H ;
Sommer, H .
EMBO JOURNAL, 1999, 18 (19) :5370-5379
[9]  
ESAU K, 1977, ANATOMY SEED PLANTS, P375
[10]   Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development [J].
Ferrándiz, C ;
Liljegren, SJ ;
Yanofsky, MF .
SCIENCE, 2000, 289 (5478) :436-438