Antibacterial coatings for medical devices based on glass polyalkenoate cement chemistry

被引:19
作者
Coughlan, A. [1 ,2 ]
Boyd, D. [1 ,2 ]
Douglas, C. W. I. [3 ]
Towler, M. R. [1 ,2 ,4 ]
机构
[1] Univ Limerick, Clin Mat Unit, Limerick, Ireland
[2] Univ Limerick, Mat & Surface Sci Inst, Limerick, Ireland
[3] Sch Clin Dent, Dept Oral Pathol, Sheffield, S Yorkshire, England
[4] Nagoya Univ, Grad Sch Engn, Dept Crystalline Mat Sci, Nagoya, Aichi 4648601, Japan
关键词
D O I
10.1007/s10856-008-3519-x
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A biofilm is an accumulation of micro-organisms and their extracellular products forming a structured community on a surface. Biofilm formation on medical devices has severe health consequences as bacteria growing in this lifestyle are tolerant to both host defense mechanisms and antibiotic therapies. However, silver and zinc ions inhibit the attachment and proliferation of immature biofilms. The objective of this study is to evaluate whether it is possible to produce silver and zinc-containing glass polyalkenoate cement (GPC) coatings for medical devices that have antibacterial activity and which may therefore inhibit biofilm formation on a material surface. Two silver and zinc-containing GPC coatings (A and B) were synthesised and coated onto Ti6Al4V discs. Their handling properties were characterised and atomic absorption spectrometery was employed to determine zinc and silver ion release with coating maturation up to 30 days. The antibacterial properties of the coatings were also evaluated against Staphylococcus aureus and a clinical isolate of Pseudomonas aeruginosa using an agar diffusion assay method. The majority of the zinc and silver ions were released within the first 24 h; both coatings exhibited antibacterial effect against the two bacterial strains, but the effect was more intense for B which contained more silver and less zinc than A. Both coatings produced clear zones of inhibition with each of the two organisms tested. In this assay, Ps. aeruginosa was more sensitive than S. aureus. The diameters of these zones were reduced after the coating had been immersed in water for varying periods due to the resultant effect on ion release.
引用
收藏
页码:3555 / 3560
页数:6
相关论文
共 32 条
[1]  
*AG TOX SUBST DIS, 2005, ASTDR TOX PROF ZINC
[2]  
[Anonymous], 2000, VALID ANAL METHODS P
[3]   In vivo skeletal response and biomechanical assessment of two novel polyalkenoate cements following femoral implantation in the female New Zealand White rabbit [J].
Blades, MC ;
Moore, DP ;
Revell, PA ;
Hill, R .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 1998, 9 (12) :701-706
[4]   Comparison of an experimental bone cement with surgical Simplex® P, Spineplex® and Cortoss® [J].
Boyd, D. ;
Towler, M. R. ;
Wren, A. ;
Clarkin, O. M. .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2008, 19 (04) :1745-1752
[5]   Zinc-based glass polyalkenoate cements with improved setting times and mechanical properties [J].
Boyd, D. ;
Clarkin, O. M. ;
Wren, A. W. ;
Towler, M. R. .
ACTA BIOMATERIALIA, 2008, 4 (02) :425-431
[6]   The antibacterial effects of zinc ion migration from zinc-based glass polyalkenoate cements [J].
Boyd, D. ;
Li, H. ;
Tanner, D. A. ;
Towler, M. R. ;
Wall, J. G. .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2006, 17 (06) :489-494
[7]   The processing, mechanical properties and bioactivity of zinc based glass ionomer cements [J].
Boyd, D ;
Towler, MR .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2005, 16 (09) :843-850
[8]   BONE COMPRESSIVE STRENGTH - INFLUENCE OF DENSITY AND STRAIN RATE [J].
CARTER, DR ;
HAYES, WC .
SCIENCE, 1976, 194 (4270) :1174-1176
[9]   Direct confocal microscopy studies of the bacterial colonization in vitro of a silver-coated heart valve sewing cuff [J].
Cook, G ;
Costerton, JW ;
Darouiche, RO .
INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS, 2000, 13 (03) :169-173
[10]   Antimicrobial efficacy of a silver-zeolite matrix coating on stainless steel [J].
Cowan, MM ;
Abshire, KZ ;
Houk, SL ;
Evans, SM .
JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2003, 30 (02) :102-106