Predicting P-glycoprotein substrates by a quantitative structure-activity relationship model

被引:89
作者
Gombar, VK [1 ]
Polli, JW [1 ]
Humphreys, JE [1 ]
Wring, SA [1 ]
Serabjit-Singh, CS [1 ]
机构
[1] GlaxoSmithKline, Preclin Drug Metab & Pharmacokinet, Res Triangle Pk, NC 27709 USA
关键词
absorption; blood-brain barrier; metabolism; multi-drug resistance; P-glycoprotein; QSAR; transporter;
D O I
10.1002/jps.20035
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
A quantitative structure-activity relationship (QSAR) model has been developed to predict whether a given compound is a P-glycoprotein (Pgp) substrate or not. The training set consisted of 95 compounds classified as substrates or non-substrates based on the results from in vitro monolayer efflux assays. The two-group linear discriminant model uses 27 statistically significant, information-rich structure quantifiers to compute the probability of a given structure to be a Pgp substrate. Analysis of the descriptors revealed that the ability to partition into membranes, molecular bulk, and the counts and electrotopological values of certain isolated and bonded hydrides are important structural attributes of substrates. The model fits the data with sensitivity of 100% and specificity of 90.6% in the jackknifed cross-validation test. A prediction accuracy of 86.2% was obtained on a test set of 58 compounds. Examination of the eight "mispredicted" compounds revealed two distinct categories. Five mispredictions were explained by experimental limitations of the efflux assay; these compounds had high permeability and/or were inhibitors of calcein-AM transport. Three mispredictions Were due to limitations of the chemical space covered by the current model. The Pgp QSAR model provides an in silico screen to aid in compound selection and in vitro efflux assay prioritization. (C) 2004 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 93:957-968, 2004.
引用
收藏
页码:957 / 968
页数:12
相关论文
共 33 条
[1]   Mammalian ABC transporters in health and disease [J].
Borst, P ;
Elferink, RO .
ANNUAL REVIEW OF BIOCHEMISTRY, 2002, 71 :537-592
[2]   Passive permeability and P-glycoprotein-mediated efflux differentiate central nervous system (CNS) and non-CNS marketed drugs [J].
Doan, KMM ;
Humphreys, JE ;
Webster, LO ;
Wring, SA ;
Shampine, LJ ;
Serabjit-Singh, CJ ;
Adkison, KK ;
Polli, JW .
JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, 2002, 303 (03) :1029-1037
[3]   Progress in predicting human ADME parameters in silico [J].
Ekins, S ;
Waller, CL ;
Swaan, PW ;
Cruciani, G ;
Wrighton, SA ;
Wikel, JH .
JOURNAL OF PHARMACOLOGICAL AND TOXICOLOGICAL METHODS, 2000, 44 (01) :251-272
[4]   The role of passive transbilayer drug movement in multidrug resistance and its modulation [J].
Eytan, GD ;
Regev, R ;
Oren, G ;
Assaraf, YG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (22) :12897-12902
[5]   Analysis of the tangled relationships between P-glycoprotein-mediated multidrug resistance and the lipid phase of the cell membrane [J].
Ferté, J .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2000, 267 (02) :277-294
[6]  
Fromm MF, 2000, INT J CLIN PHARM TH, V38, P69
[7]  
GOMBAR V, VINRTP VERY INFORMAT
[8]   Role of ADME characteristics in drug discovery and their in silico evaluation:: In silico screening of chemicals for their metabolic stability [J].
Gombar, VK ;
Silver, IS ;
Zhao, ZY .
CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2003, 3 (11) :1205-1225
[9]   Reliable assessment of log P of compounds of pharmaceutical relevance [J].
Gombar, VK .
SAR AND QSAR IN ENVIRONMENTAL RESEARCH, 1999, 10 (04) :371-380
[10]   Modeling antileukemic activity of carboquinones with electrotopological state and chi indices [J].
Gough, JD ;
Hall, LH .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1999, 39 (02) :356-361