Design, hydrothermal synthesis and electrochemical properties of porous birnessite-type manganese dioxide nanosheets on graphene as a hybrid material for supercapacitors

被引:104
作者
Liu, Ying [1 ]
Yan, De [1 ]
Zhuo, Renfu [1 ]
Li, Shuankui [1 ]
Wu, Zhiguo [1 ]
Wang, Jun [1 ]
Ren, Pingyuan [1 ]
Yan, Pengxun [1 ,2 ]
Geng, Zhongrong [3 ]
机构
[1] Lanzhou Univ, Sch Phys Sci & Technol, Lanzhou 730000, Peoples R China
[2] Chinese Acad Sci, Inst Chem & Phys, Key Lab Solid Lubricat, Lanzhou 730000, Peoples R China
[3] Lanzhou Jiaotong Univ, Sch Mechatron Engn, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
Birnessite-type manganese dioxide; Graphene; Hydrothermal method; Supercapacitors; COMPOSITE ELECTRODES; IMPEDANCE SPECTROSCOPY; PERFORMANCE; CARBON; REDUCTION; MECHANISM; FILM;
D O I
10.1016/j.jpowsour.2013.05.062
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
MnO2-graphene hybrid with a unique structure of porous birnessite-type manganese dioxide (MnO2) nanosheets on graphene has been designed and synthesized by a simple hydrothermal method. The formation mechanism of the hybrid is discussed based on a series of time-dependent experiments. Electrochemical measurements reveal that the MnO2-graphene electrode exhibits much higher specific capacitance (315 F g(-1) at a current density of 0.2 A g(-1)) and better rate capability (even 193 F g(-1) at 6 A g(-1)) compared with both the graphene and MnO2 electrodes. Moreover, the capacitance of MnO2-graphene electrode is still 87% retained after 2000 cycles at a charging rate of 3 A g(-1). The superior capacitive performance of the hybrid is attributed to its unique structure, which provides good electronic conductivity, fast electron and ion transport, and high utilization of MnO2. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:78 / 85
页数:8
相关论文
共 55 条
[1]   Graphene: Electronic and Photonic Properties and Devices [J].
Avouris, Phaedon .
NANO LETTERS, 2010, 10 (11) :4285-4294
[2]   Influence of the atomic structure on the Raman spectra of graphite edges -: art. no. 247401 [J].
Cançado, LG ;
Pimenta, MA ;
Neves, BRA ;
Dantas, MSS ;
Jorio, A .
PHYSICAL REVIEW LETTERS, 2004, 93 (24)
[3]   Graphene and nanostructured MnO2 composite electrodes for supercapacitors [J].
Cheng, Qian ;
Tang, Jie ;
Ma, Jun ;
Zhang, Han ;
Shinya, Norio ;
Qin, Lu-Chang .
CARBON, 2011, 49 (09) :2917-2925
[4]  
Conway B.E., 1999, ELECTROCHEMICAL SUPE, P444
[5]   Enhanced manganese dioxide supercapacitor electrodes produced by electrodeposition [J].
Cross, Andrew ;
Morel, Alban ;
Cormie, Ariana ;
Hollenkamp, Tony ;
Donne, Scott .
JOURNAL OF POWER SOURCES, 2011, 196 (18) :7847-7853
[6]   Electrochemical supercapacitor studies of nanostructured α-MnO2 synthesized by microemulsion method and the effect of annealing [J].
Devaraj, S. ;
Munichandraiah, N. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (02) :A80-A88
[7]  
Fabio A.D., 2001, J ELECTROCHEM SOC, V186, pA850
[8]   Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond [J].
Ferrari, AC ;
Robertson, J .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2004, 362 (1824) :2477-2512
[9]   Poly(3-methyl thiophene)/PVDF composite as an electrode for supercapacitors [J].
Fonseca, Carla Polo ;
Benedetti, Joao E. ;
Neves, Silmara .
JOURNAL OF POWER SOURCES, 2006, 158 (01) :789-794
[10]  
Gao W, 2009, NAT CHEM, V1, P403, DOI [10.1038/NCHEM.281, 10.1038/nchem.281]