Reversible hole engineering for single-wall carbon nanotubes

被引:13
作者
Hasi, F [1 ]
Simon, F [1 ]
Kuzmany, H [1 ]
机构
[1] Univ Vienna, Inst Mat Phys, A-1090 Vienna, Austria
关键词
single-wall carbon nanotubes; Raman Spectroscopy; filling of nanotubes; peapods; purification; controlled oxidation; diameter control;
D O I
10.1166/jnn.2005.433
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Experimental results are provided for reversible generation of holes on single-wall carbon nanotubes and their closing by temperature treatment. The generation of the holes was analyzed by checking the amount Of C-60 fullerenes that can be filled into the tubes and subsequently transformed to an inner-shell tube. The concentration of the latter was determined from the Raman response of the radial breathing mode. The tube opening process was performed by exposure of the tubes to air at elevated temperatures. This process was found to be independent from the tube diameters. In contrast, the tube closing process was found to depend strongly of the tube diameter. For large diameter tubes (d = 1.8 nm) the activation energy was 1.7 eV whereas for the small diameter tubes this energy was only 0.33 eV. Optimum conditions for tube closing were found to be one hour at 800 degrees C or 10 minutes at 1000 degrees C. From the almost identical Raman spectra for the tubes before and after engineering, a predominant generation of the holes at the tube ends is concluded.
引用
收藏
页码:1785 / 1791
页数:7
相关论文
共 21 条
[1]   Structure-assigned optical spectra of single-walled carbon nanotubes [J].
Bachilo, SM ;
Strano, MS ;
Kittrell, C ;
Hauge, RH ;
Smalley, RE ;
Weisman, RB .
SCIENCE, 2002, 298 (5602) :2361-2366
[2]   Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes [J].
Bandow, S ;
Takizawa, M ;
Hirahara, K ;
Yudasaka, M ;
Iijima, S .
CHEMICAL PHYSICS LETTERS, 2001, 337 (1-3) :48-54
[3]   ATOMS IN CARBON CAGES - THE STRUCTURE AND PROPERTIES OF ENDOHEDRAL FULLERENES [J].
BETHUNE, DS ;
JOHNSON, RD ;
SALEM, JR ;
DEVRIES, MS ;
YANNONI, CS .
NATURE, 1993, 366 (6451) :123-128
[4]   FULLERENES WITH METALS INSIDE [J].
CHAI, Y ;
GUO, T ;
JIN, CM ;
HAUFLER, RE ;
CHIBANTE, LPF ;
FURE, J ;
WANG, LH ;
ALFORD, JM ;
SMALLEY, RE .
JOURNAL OF PHYSICAL CHEMISTRY, 1991, 95 (20) :7564-7568
[5]   Optical transition energies for carbon nanotubes from resonant Raman spectroscopy: Environment and temperature effects [J].
Fantini, C ;
Jorio, A ;
Souza, M ;
Strano, MS ;
Dresselhaus, MS ;
Pimenta, MA .
PHYSICAL REVIEW LETTERS, 2004, 93 (14) :147406-1
[6]   RELATION BETWEEN METAL ELECTRONIC-STRUCTURE AND MORPHOLOGY OF METAL-COMPOUNDS INSIDE CARBON NANOTUBES [J].
GUERRET-PIECOURT, C ;
LEBOUAR, Y ;
LOISEAU, A ;
PASCARD, H .
NATURE, 1994, 372 (6508) :761-765
[7]   Electron diffraction study of one-dimensional crystals of fullerenes [J].
Hirahara, K ;
Bandow, S ;
Suenaga, K ;
Kato, H ;
Okazaki, T ;
Shinohara, H ;
Iijima, S .
PHYSICAL REVIEW B, 2001, 64 (11)
[8]   One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes [J].
Hirahara, K ;
Suenaga, K ;
Bandow, S ;
Kato, H ;
Okazaki, T ;
Shinohara, H ;
Iijima, S .
PHYSICAL REVIEW LETTERS, 2000, 85 (25) :5384-5387
[9]   HELICAL MICROTUBULES OF GRAPHITIC CARBON [J].
IIJIMA, S .
NATURE, 1991, 354 (6348) :56-58
[10]   Encapsulation of molecular hydrogen in fullerene C 60 by organic synthesis [J].
Komatsu, K ;
Murata, M ;
Murata, Y .
SCIENCE, 2005, 307 (5707) :238-240