Multi-objective parameter conditioning of a three-source wheat canopy model

被引:40
作者
Mo, XG [1 ]
Beven, K
机构
[1] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China
[2] Univ Lancaster, Inst Environm & Nat Sci, Lancaster LA1 4YQ, England
基金
英国自然环境研究理事会;
关键词
three-source model; GLUE; uncertainty; multi-objective evaluation;
D O I
10.1016/j.agrformet.2003.09.009
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
A three-source canopy model, which distinguishes the energy budgets for sunlit and shaded leaves and the underlying soil surface, is applied within the generalised likelihood uncertainty estimation (GLUE) methodology for a site near Beijing, China. Parameter sensitivities and uncertainty bounds for CO2 and heat fluxes were analysed based on a multi-objective evaluation of Monte-Carlo realisations of model parameters. Two data sets acquired before and after an irrigation event in a wheat field were used to constrain the model. The results show that some of the six parameters varied are strongly conditioned by the observed fluxes, especially by the observations of CO2 flux above the canopy, but the scatter plots and cumulative distributions of parameter spaces are quite different between the two data sets. The predicted canopy photosynthesis rate demonstrates wider 95% uncertainty bounds than the latent and sensible heat fluxes. Comparison of model performances between two-source and three-source models shows that the parameter sensitivities are different and that the three-source model gives more constrained uncertainty bounds. Finally, a 'best' parameter set is used to estimate the energy budgets at the three sources. It is shown that the net radiation on shaded leaves is about 20% of the sunlit leaves, whereas the ratio is 50% for latent heat flux around noon. Hence, the shaded leaves are predicted as acting as sinks of sensible heat, reducing the predicted temperature difference, between the two groups of leaves. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:39 / 63
页数:25
相关论文
共 44 条
[1]  
Ball J. T., 1987, Progress in photosynthesis research, V1, P221, DOI DOI 10.1007/978-94-017-0519-6_48
[2]   Sensitivity analysis of a land surface scheme using multicriteria methods [J].
Bastidas, LA ;
Gupta, HV ;
Sorooshian, S ;
Shuttleworth, WJ ;
Yang, ZL .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1999, 104 (D16) :19481-19490
[3]   THE FUTURE OF DISTRIBUTED MODELS - MODEL CALIBRATION AND UNCERTAINTY PREDICTION [J].
BEVEN, K ;
BINLEY, A .
HYDROLOGICAL PROCESSES, 1992, 6 (03) :279-298
[4]   Towards a coherent philosophy for modelling the environment [J].
Beven, K .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2002, 458 (2026) :2465-2484
[5]   Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology [J].
Beven, K ;
Freer, J .
JOURNAL OF HYDROLOGY, 2001, 249 (1-4) :11-29
[6]   AN ANALYSIS OF INFRARED TEMPERATURE OBSERVATIONS OVER WHEAT AND CALCULATION OF LATENT-HEAT FLUX [J].
CHOUDHURY, BJ ;
REGINATO, RJ ;
IDSO, SB .
AGRICULTURAL AND FOREST METEOROLOGY, 1986, 37 (01) :75-88
[7]  
CIONCO R M, 1972, Boundary-Layer Meteorology, V3, P255, DOI 10.1007/BF02033923
[8]   PHYSIOLOGICAL AND ENVIRONMENTAL-REGULATION OF STOMATAL CONDUCTANCE, PHOTOSYNTHESIS AND TRANSPIRATION - A MODEL THAT INCLUDES A LAMINAR BOUNDARY-LAYER [J].
COLLATZ, GJ ;
BALL, JT ;
GRIVET, C ;
BERRY, JA .
AGRICULTURAL AND FOREST METEOROLOGY, 1991, 54 (2-4) :107-136
[9]   Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models [J].
dePury, DGG ;
Farquhar, GD .
PLANT CELL AND ENVIRONMENT, 1997, 20 (05) :537-557
[10]  
Farquhar G. D., 1982, Encyclopedia of plant physiology. New series. Volume 12B. Physiological plant ecology. II. Water relations and carbon assimilation. [Lange, O.L.