We tested the hypothesis that the apoptosis of inner retina neurons and increased expression of glial fibrillary acidic protein (GFAP) observed in the rat after a short duration of diabetes are mediated by polyol pathway activity. Rats with 10 weeks of streptozotocin-induced diabetes and GHb levels of 16 +/- 2% (mean SD) showed increased retinal levels of sorbitol and fructose, attenuation of GFAP immunostaining in astrocytes, appearance of prominent GFAP expression in Muller glial cells, and a fourfold increase in the number of apoptotic neurons when compared with nondiabetic rats. The cells undergoing apoptosis were immunoreactive for aldose reductase. Sorbinil, an inhibitor of aldose reductase, prevented all abnormalities. Intensive insulin treatment also prevented most abnormalities, despite reducing Glib only to 12 +/- 1%. Diabetic mice, known to have much lower aldose reductase activity in other tissues when compared with rats, did not accumulate sorbitol and fructose in the retina and were protected from neuronal apoptosis and GFAP changes in the presence of Glib levels of 14 +/- 2%. This work documents discrete cellular consequences of polyol pathway activity in the retina, and it suggests that activation of the pathway and "retinal neuropathy" require severe hyperglycemia and/or high activity of aldose reductase. These findings have implications for how to evaluate the role of the polyol pathway in diabetic retinopathy.