A novel gene family in moss (Physcomitrella patens) shows sequence homology and a phylogenetic relationship with the TIR-NBS class of plant disease resistance genes

被引:59
作者
Akita, M
Valkonen, JPT
机构
[1] SLU, Genet Ctr, Dept Plant Biol, S-75007 Uppsala, Sweden
[2] Univ Helsinki, Dept Appl Biol, FIN-00014 Helsinki, Finland
关键词
moss; Physcomitrella patens; disease resistance gene; nucleotide binding site; DNA sequence variation; plant evolution; polymerase chain reaction (PCR);
D O I
10.1007/s00239-002-2355-8
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Plant disease resistance (R) genes encode proteins in which several motifs of the nucleotide-binding region (NBS) are highly conserved. Using degenerate primers designed according to the kinase 1 (P-loop) and hydrophobic (HD) motifs of the R gene NBS domains, homologous sequences were cloned from moss (Physcomitrella patens; phylum Bryophyta) representing an ancient nonvascular plant. A novel gene family (PpC) with at least eight homologous members was found. Expression of five members was detected. The level of expression was dependent on the developmental stage of moss, being higher in the gametophyte tissue than in the protonema tissue. The PpCs contained the conserved motifs characteristic of the NBS regions of R genes, and a kinase domain was found upstream from the NBS region. Phylogenetic analysis using the deduced NBS amino acid sequences of the PpCs and the plant genes available in databanks indicated that the PpCs show the closest relationship with the TIR-NBS class of R genes. No significant similarity to plant genes other than R genes was observed. These findings shed novel light on the evolutionary history of the R gene families, suggesting that the NBS region characteristic of the TIR-NBS class of R-like genes evolved prior to the evolutionary differentiation of vascular and nonvascular plants.
引用
收藏
页码:595 / 605
页数:11
相关论文
共 47 条
[1]   Inactivation of the flax rust resistance gene M associated with loss of a repeated unit within the leucine-rich repeat coding region [J].
Anderson, PA ;
Lawrence, GJ ;
Morrish, BC ;
Ayliffe, MA ;
Finnegan, EJ ;
Ellis, JG .
PLANT CELL, 1997, 9 (04) :641-651
[2]   The Rx gene from potato controls separate virus resistance and cell death responses [J].
Bendahmane, A ;
Kanyuka, K ;
Baulcombe, DC .
PLANT CELL, 1999, 11 (05) :781-791
[3]   RPS2 OF ARABIDOPSIS-THALIANA - A LEUCINE-RICH REPEAT CLASS OF PLANT-DISEASE RESISTANCE GENES [J].
BENT, AF ;
KUNKEL, BN ;
DAHLBECK, D ;
BROWN, KL ;
SCHMIDT, R ;
GIRAUDAT, J ;
LEUNG, J ;
STASKAWICZ, BJ .
SCIENCE, 1994, 265 (5180) :1856-1860
[4]   Three genes of the arabidopsis RPP1 complex resistance locus recognize distinct Peronospora parasitica avirulence determinants [J].
Botella, MA ;
Parker, JE ;
Frost, LN ;
Bittner-Eddy, PD ;
Beynon, JL ;
Daniels, MJ ;
Holub, EB ;
Jones, JDG .
PLANT CELL, 1998, 10 (11) :1847-1860
[5]   Alternatively spliced N resistance gene transcripts:: Their possible role in tobacco mosaic virus resistance [J].
Dinesh-Kumar, SP ;
Baker, BJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (04) :1908-1913
[6]   Structure, function and evolution of plant disease resistance genes [J].
Ellis, J ;
Dodds, P ;
Pryor, T .
CURRENT OPINION IN PLANT BIOLOGY, 2000, 3 (04) :278-284
[7]   Negative regulation of defense responses in plants by a conserved MAPKK kinase [J].
Frye, CA ;
Tang, DZ ;
Innes, RW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (01) :373-378
[8]   Organization of genes controlling disease resistance in the potato genome [J].
Gebhardt, C ;
Valkonen, JPT .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 2001, 39 :79-102
[9]   Identification of a novel Δ6-acyl-group desaturase by targeted gene disruption in Physcomitrella patens [J].
Girke, T ;
Schmidt, H ;
Zähringer, U ;
Reski, R ;
Heinz, E .
PLANT JOURNAL, 1998, 15 (01) :39-48
[10]   Expression and genome organization of resistance gene analogs in soybean [J].
Graham, MA ;
Marek, LF ;
Lohnes, D ;
Cregan, P ;
Shoemaker, RC .
GENOME, 2000, 43 (01) :86-93