Propagation of partially coherent twisted anisotropic Gaussian-Schell model beams through misaligned optical systems

被引:24
作者
Cai, YJ
Lin, Q
机构
[1] Zhejiang Univ, Dept Phys, Inst Opt, Hangzhou 310028, Peoples R China
[2] Zhejiang Univ, State Key Lab Modern Opt Instrumentat, Hangzhou 310028, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/S0030-4018(02)01829-1
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The generalized diffraction integral formulae for partially coherent beams through misaligned optical systems are derived in both spatial and spatial-frequency domain. Based on these formulae, the analytical propagation formulae for partially coherent twisted anisotropic Gaussian-Schell model (GSM) beams through misaligned optical systems are derived. The derived formulae provide a powerful and convenient tool for treating the propagation and transformation of partially coherent twisted anisotropic GSM beams through misaligned optical systems in spatial domain and spatial-frequency domain. As an application example, the intensity distribution properties of partially coherent twisted GSM beams through a misaligned thin lens are studied. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 14 条
[1]   TWISTED GAUSSIAN SCHELL-MODEL BEAMS - A SUPERPOSITION MODEL [J].
AMBROSINI, D ;
BAGINI, V ;
GORI, F ;
SANTARSIERO, M .
JOURNAL OF MODERN OPTICS, 1994, 41 (07) :1391-1399
[2]   Collins formula and propagation of Bessel-modulated Gaussian light beams through an ABCD optical system [J].
Belafhal, A ;
Dalil-Essakali, L .
OPTICS COMMUNICATIONS, 2000, 177 (1-6) :181-188
[4]  
Ding GL, 2000, J MOD OPTIC, V47, P1483
[5]  
LIN JA, 1990, OPTIK, V86, P67
[6]   Collins formula and tensor ABCD law in spatial-frequency domain [J].
Lin, Q ;
Wang, LG .
OPTICS COMMUNICATIONS, 2000, 185 (4-6) :263-269
[7]   Tensor ABCD law for partially coherent twisted anisotropic Gaussian-Schell model beams [J].
Lin, Q ;
Cai, YJ .
OPTICS LETTERS, 2002, 27 (04) :216-218
[8]   Collins formula in frequency-domain and fractional Fourier transforms [J].
Liu, ZY ;
Wu, XY ;
Fan, DY .
OPTICS COMMUNICATIONS, 1998, 155 (1-3) :7-11
[9]   ANISOTROPIC GAUSSIAN SCHELL-MODEL BEAMS - PASSAGE THROUGH OPTICAL-SYSTEMS AND ASSOCIATED INVARIANTS [J].
SIMON, R ;
SUDARSHAN, ECG ;
MUKUNDA, N .
PHYSICAL REVIEW A, 1985, 31 (04) :2419-2434
[10]   Optical phase space, Wigner representation, and invariant quality parameters [J].
Simon, R ;
Mukunda, N .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2000, 17 (12) :2440-2463