Statistics and Physical Origins of pK and Ionization State Changes upon Protein-Ligand Binding

被引:40
作者
Aguilar, Boris [1 ]
Anandakrishnan, Ramu [1 ]
Ruscio, Jory Z. [3 ]
Onufriev, Alexey V. [1 ,2 ]
机构
[1] Virginia Tech, Dept Comp Sci, Blacksburg, VA 24061 USA
[2] Virginia Tech, Dept Phys, Blacksburg, VA USA
[3] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA
基金
美国国家卫生研究院;
关键词
IONIZABLE GROUPS; ELECTROSTATIC INTERACTIONS; CONFORMATIONAL-CHANGES; CHARGE OPTIMIZATION; CALCULATING PK(A)S; PREDICTION; PROTONATION; VALUES; SIMULATION; INHIBITORS;
D O I
10.1016/j.bpj.2009.11.016
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
This work investigates statistical prevalence and overall physical origins of changes in charge states of receptor proteins upon ligand binding. These changes are explored as a function of the ligand type (small molecule, protein, and nucleic acid), and distance from the binding region. Standard continuum solvent methodology is used to compute, on an equal footing, pK changes upon ligand binding for a total of 5899 ionizable residues in 20 protein-protein, 20 protein-small molecule, and 20 protein-nucleic acid high-resolution complexes. The size of the data set combined with an extensive error and sensitivity analysis allows us to make statistically justified and conservative conclusions: in 60% of all protein-small molecule, 90% of all protein-protein, and 85% of all protein-nucleic acid complexes there exists at least one ionizable residue that changes its charge state upon ligand binding at physiological conditions (pH = 6.5). Considering the most biologically relevant pH range of 4-8, the number of ionizable residues that experience substantial pK changes (Delta pK > 1.0) due to ligand binding is appreciable: on average, 6% of all ionizable residues in protein-small molecule complexes, 9% in protein-protein, and 12% in protein-nucleic acid complexes experience a substantial pK change upon ligand binding. These changes are safely above the statistical false-positive noise level. Most of the changes occur in the immediate binding interface region, where approximately one out of five ionizable residues experiences substantial pK change regardless of the ligand type. However, the physical origins of the change differ between the types: in protein-nucleic acid complexes, the pK values of interface residues are predominantly affected by electrostatic effects, whereas in protein-protein and protein-small molecule complexes, structural changes due to the induced-fit effect play an equally important role. In protein-protein and protein-nucleic acid complexes, there is a statistically significant number of substantial pK perturbations, mostly due to the induced-fit structural changes, in regions far from the binding interface.
引用
收藏
页码:872 / 880
页数:9
相关论文
共 54 条
[1]   Analysis of basic clustering algorithms for numerical estimation of statistical averages in biomolecules [J].
Anandakrishnan, Ramu ;
Onufriev, Alexey .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2008, 15 (02) :165-184
[2]   PREDICTION OF PH-DEPENDENT PROPERTIES OF PROTEINS [J].
ANTOSIEWICZ, J ;
MCCAMMON, JA ;
GILSON, MK .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 238 (03) :415-436
[3]   Very fast prediction and rationalization of pKa values for protein-ligand complexes [J].
Bas, Delphine C. ;
Rogers, David M. ;
Jensen, Jan H. .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2008, 73 (03) :765-783
[4]   PKAS OF IONIZABLE GROUPS IN PROTEINS - ATOMIC DETAIL FROM A CONTINUUM ELECTROSTATIC MODEL [J].
BASHFORD, D ;
KARPLUS, M .
BIOCHEMISTRY, 1990, 29 (44) :10219-10225
[5]   PROTONATION OF INTERACTING RESIDUES IN A PROTEIN BY A MONTE-CARLO METHOD - APPLICATION TO LYSOZYME AND THE PHOTOSYNTHETIC REACTION CENTER OF RHODOBACTER-SPHAEROIDES [J].
BEROZA, P ;
FREDKIN, DR ;
OKAMURA, MY ;
FEHER, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (13) :5804-5808
[6]   An analysis of conformational changes on protein-protein association: implications for predictive docking [J].
Betts, MJ ;
Sternberg, MJE .
PROTEIN ENGINEERING, 1999, 12 (04) :271-283
[7]   How do proteins interact? [J].
Boehr, David D. ;
Wright, Peter E. .
SCIENCE, 2008, 320 (5882) :1429-1430
[8]   Statistical analysis and prediction of protein-protein interfaces [J].
Bordner, AJ ;
Abagyan, R .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2005, 60 (03) :353-366
[9]   The Amber biomolecular simulation programs [J].
Case, DA ;
Cheatham, TE ;
Darden, T ;
Gohlke, H ;
Luo, R ;
Merz, KM ;
Onufriev, A ;
Simmerling, C ;
Wang, B ;
Woods, RJ .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2005, 26 (16) :1668-1688
[10]   Importance of accurate charges in molecular docking: Quantum mechanical/molecular mechanical (QM/MM) approach [J].
Cho, AE ;
Guallar, V ;
Berne, BJ ;
Friesner, R .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2005, 26 (09) :915-931