Quasi-universal bandwidth selection for kernel density estimators

被引:11
作者
Wegkamp, MH [1 ]
机构
[1] Yale Univ, Dept Stat, New Haven, CT 06520 USA
来源
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE | 1999年 / 27卷 / 02期
关键词
asymptotic optimality; data splitting; empirical processes; kernel density estimators; projection estimators; universal bandwidth selection;
D O I
10.2307/3315649
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let (f) over cap(n), h denote the kernel density estimate based on a sample of size n drawn from an unknown density f. Using techniques from L-2 projection density estimators, the author shows how to construct a data-driven estimator (f) over cap(n), (H) which satisfies (sup)(bounded) lim sup(n --> infinity) integral E\(f) over cap(n),(H)(x) - f(x)\(2)dx/inf(h > 0)integral E\(f) over cap(n,h)(x)(\)(2)dx = 1. This paper is inspired by work of Stone (1984), Devroye and Lugosi (1996) and BirgC and Massart (1997).
引用
收藏
页码:409 / 420
页数:12
相关论文
共 11 条
[1]  
BIRGE L., 1997, FESTSCHRIFT L LECAM, P55
[2]  
BOWMAN AW, 1984, BIOMETRIKA, V71, P353
[3]   DISTRIBUTION-FREE LOWER BOUNDS IN DENSITY-ESTIMATION [J].
DEVROYE, L ;
PENROD, CS .
ANNALS OF STATISTICS, 1984, 12 (04) :1250-1262
[4]   THE EQUIVALENCE OF WEAK, STRONG AND COMPLETE CONVERGENCE IN L1 FOR KERNEL DENSITY ESTIMATES [J].
DEVROYE, L .
ANNALS OF STATISTICS, 1983, 11 (03) :896-904
[5]  
Devroye L, 1996, ANN STAT, V24, P2499
[6]  
Devroye L, 1997, ANN STAT, V25, P2626
[7]  
Devroye L., 1996, A probabilistic theory of pattern recognition
[8]  
HENGARTNER NW, 1998, UNIVERSAL ESTIMATION
[9]  
RUDEMO M, 1982, SCAND J STAT, V9, P65
[10]   AN ASYMPTOTICALLY OPTIMAL WINDOW SELECTION RULE FOR KERNEL DENSITY ESTIMATES [J].
STONE, CJ .
ANNALS OF STATISTICS, 1984, 12 (04) :1285-1297