Product and quotient of correlated beta variables

被引:14
作者
Nagar, Daya K. [2 ]
Orozco-Castaneda, Johanna Marcela [2 ]
Gupta, Arjun K. [1 ]
机构
[1] Bowling Green State Univ, Dept Math & Stat, Bowling Green, OH 43403 USA
[2] Univ Antioquia, Dept Matemat, Medellin, Colombia
关键词
Beta distribution; Bivariate distribution; Quotient; Product; Gauss hypergeometric function;
D O I
10.1016/j.aml.2008.02.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let U. V, W be independent random variables having a standard gamma distribution with respective shape parameters a, b, c, and define X = U/(U + W), Y = V/(V + W). Clearly, X and Y are correlated each having a beta distribution, X similar to B(a, c) and Y similar to B(b. c). In this article we derive probability density functions of XY, X/Y and X/(X + Y). Published by Elsevier Ltd
引用
收藏
页码:105 / 109
页数:5
相关论文
共 11 条
[1]  
[Anonymous], 1969, SPECIAL FUNCTIONS TH
[2]  
[Anonymous], 1982, Journal of Educational Statistics, DOI DOI 10.3102/10769986007004271
[3]   Computationally Convenient Distributional Assumptions for Common-Value Auctions [J].
Gordy M.B. .
Computational Economics, 1998, 12 (1) :61-78
[4]  
Gradshteyn S., 2014, Table of Integrals, Series, and Products, V8th
[5]  
Gupta AK., 1999, MATRIX VARIATE DISTR
[6]  
Johnson N.L., 1994, Continuous univariate distributions
[7]   A GENERALIZATION OF THE BETA-DISTRIBUTION WITH APPLICATIONS [J].
MCDONALD, JB ;
XU, YX .
JOURNAL OF ECONOMETRICS, 1995, 66 (1-2) :133-152
[8]  
Nagar Daya K., 2005, SCI MATH JPN, V61, P109
[9]  
Ng K. W., 1995, Research Report No. 84
[10]   A bivariate beta distribution [J].
Olkin, I ;
Liu, RX .
STATISTICS & PROBABILITY LETTERS, 2003, 62 (04) :407-412