A crystallographic view of interactions between Dbs and Cdc42: PH domain-assisted guanine nucleotide exchange

被引:177
作者
Rossman, KL
Worthylake, DK
Snyder, JT
Siderovski, DP
Campbell, SL
Sondek, J [1 ]
机构
[1] Univ N Carolina, Dept Biochem & Biophys, Chapel Hill, NC 27599 USA
[2] Univ N Carolina, Dept Pharmacol, Chapel Hill, NC 27599 USA
[3] Univ N Carolina, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA
关键词
Dbs; DH domain; PH domain; Rho GEF; Rho GTPase;
D O I
10.1093/emboj/21.6.1315
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Dbl-related oncoproteins are guanine nucleotide exchange factors (GEFs) specific for Rho guanosine triphosphatases (GTPases) and invariably possess tandem Dbl (DH) and pleckstrin homology (PH) domains. While it is known that the DH domain is the principal catalytic subunit, recent biochemical data indicate that for some Dbl-family proteins, such as Dbs and Trio, PH domains may cooperate with their associated DH domains in promoting guanine nucleotide exchange of Rho GTPases. In order to gain an understanding of the involvement of these PH domains in guanine nucleotide exchange, we have determined the crystal structure of a DH/PH fragment from Dbs in complex with Cdc42. The complex features the PH domain in a unique conformation distinct from the PH domains in the related structures of Sos1 and Tiam1.Rac1. Consequently, the Dbs PH domain participates with the DH domain in binding Cdc42, primarily through a set of interactions involving switch 2 of the GTPase. Comparative sequence analysis suggests that a subset of Dbl-family proteins will utilize their PH domains similarly to Dbs.
引用
收藏
页码:1315 / 1326
页数:12
相关论文
共 65 条
[1]   Structural basis for relief of autoinhibition of the Dbl homology domain of proto-oncogene Vav by tyrosine phosphorylation [J].
Aghazadeh, B ;
Lowry, WE ;
Huang, XY ;
Rosen, MK .
CELL, 2000, 102 (05) :625-633
[2]   Structure and mutagenesis of the Dbl homology domain [J].
Aghazadeh, B ;
Zhu, K ;
Kubiseski, TJ ;
Liu, GA ;
Pawson, T ;
Zheng, Y ;
Rosen, MK .
NATURE STRUCTURAL BIOLOGY, 1998, 5 (12) :1098-1107
[3]   Sec14p-like domains in NF1 and Dbl-like proteins indicate lipid regulation of Ras and Rho signaling [J].
Aravind, L ;
Neuwald, AF ;
Ponting, CP .
CURRENT BIOLOGY, 1999, 9 (06) :R195-R197
[4]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[5]   Rho GTPases and their effector proteins [J].
Bishop, AL ;
Hall, A .
BIOCHEMICAL JOURNAL, 2000, 348 (02) :241-255
[6]   The structural basis of the activation of Ras by Sos [J].
Boriack-Sjodin, PA ;
Margarit, SM ;
Bar-Sagi, D ;
Kuriyan, J .
NATURE, 1998, 394 (6691) :337-343
[7]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[8]   The Dbl family of oncogenes [J].
Cerione, RA ;
Zheng, Y .
CURRENT OPINION IN CELL BIOLOGY, 1996, 8 (02) :216-222
[9]   The role of the PH domain in the signal-dependent membrane targeting of Sos [J].
Chen, RH ;
CorbalanGarcia, S ;
BarSagi, D .
EMBO JOURNAL, 1997, 16 (06) :1351-1359
[10]   GEFs: structural basis for their activation of small GTP-binding proteins [J].
Cherfils, J ;
Chardin, P .
TRENDS IN BIOCHEMICAL SCIENCES, 1999, 24 (08) :306-311