Identification in situ and dynamics of bacteria on limnetic organic aggregates (Lake Snow)

被引:118
作者
Weiss, P
Schweitzer, B
Amann, R
Simon, M
机构
[1] UNIV KONSTANZ, LIMNOL INST, D-78434 CONSTANCE, GERMANY
[2] TECH UNIV MUNICH, LEHRSTUHL MIKROBIOL, D-80290 MUNICH, GERMANY
关键词
D O I
10.1128/AEM.62.6.1998-2005.1996
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Microbial assemblages on large organic aggregates (lake snow) of Lake Constance, Germany, were analyzed with rRNA-directed fluorescent oligonucleotide probes specific for the domain Bacteria and the alpha-, beta-, and gamma-subclasses of the class Proteobacteria. Lake snow aggregates were either collected in situ by SCUBA diving or in a sediment trap at 50 m or formed of natural lake water incubated in rolling cylinders under simulated in situ conditions, For the latter aggregates, the time course of the microbial colonization was also examined, The natural aggregates and those made in rolling cylinders were composed of the particulate organic material present in the lake and thus reflected the composition of the ambient plankton community, AII types of lake snow aggregates examined were heavily colonized by microbial cells and harbored between 0.5 x 10(6) and >2 x 10(6) cells aggregate(-1), Between 55 and 100% of the microbial cells stained with 4',6-diamidino-2-phenylindole (DAPI) could be visualized with the domain Bacteria-specific probe. In most samples, beta-subclass proteobacteria dominated the microbial community, constituting 27 to 42% of total cells as counted by DAPI staining, irrespective of the composition of the aggregates. During the time course experiments with the laboratory-made aggregates, the fraction of beta-subclass proteobacteria usually increased over time. Except for a few samples, alpha- and gamma-subclass proteobacteria were far less abundant than beta-subclass proteobacteria, constituting 11 to 25 and 9 to 33% of total cells, respectively, Therefore, we assume that a specific aggregate-adapted microbial community was established on the aggregates. Because the compositions of the microbial assemblages on natural and laboratory-made aggregates were similar, we conclude that aggregates made in rolling cylinders are a good model system with which to examine the formation and microbial colonization of macroscopic organic aggregates.
引用
收藏
页码:1998 / 2005
页数:8
相关论文
共 40 条
[1]   PRODUCTION OF HETEROTROPHIC BACTERIA INHABITING MACROSCOPIC ORGANIC AGGREGATES (MARINE SNOW) FROM SURFACE WATERS [J].
ALLDREDGE, AL ;
COLE, JJ ;
CARON, DA .
LIMNOLOGY AND OCEANOGRAPHY, 1986, 31 (01) :68-78
[2]   CAN MICROSCALE CHEMICAL PATCHES PERSIST IN THE SEA - MICROELECTRODE STUDY OF MARINE SNOW, FECAL PELLETS [J].
ALLDREDGE, AL ;
COHEN, Y .
SCIENCE, 1987, 235 (4789) :689-691
[3]   THE RELATIVE CONTRIBUTION OF MARINE SNOW OF DIFFERENT ORIGINS TO BIOLOGICAL PROCESSES IN COASTAL WATERS [J].
ALLDREDGE, AL ;
GOTSCHALK, CC .
CONTINENTAL SHELF RESEARCH, 1990, 10 (01) :41-58
[4]   CHARACTERISTICS, DYNAMICS AND SIGNIFICANCE OF MARINE SNOW [J].
ALLDREDGE, AL ;
SILVER, MW .
PROGRESS IN OCEANOGRAPHY, 1988, 20 (01) :41-82
[5]   FLUORESCENT-OLIGONUCLEOTIDE PROBING OF WHOLE CELLS FOR DETERMINATIVE, PHYLOGENETIC, AND ENVIRONMENTAL-STUDIES IN MICROBIOLOGY [J].
AMANN, RI ;
KRUMHOLZ, L ;
STAHL, DA .
JOURNAL OF BACTERIOLOGY, 1990, 172 (02) :762-770
[6]   MOLECULAR AND MICROSCOPIC IDENTIFICATION OF SULFATE-REDUCING BACTERIA IN MULTISPECIES BIOFILMS [J].
AMANN, RI ;
STROMLEY, J ;
DEVEREUX, R ;
KEY, R ;
STAHL, DA .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1992, 58 (02) :614-623
[7]   PHYLOGENETIC IDENTIFICATION AND IN-SITU DETECTION OF INDIVIDUAL MICROBIAL-CELLS WITHOUT CULTIVATION [J].
AMANN, RI ;
LUDWIG, W ;
SCHLEIFER, KH .
MICROBIOLOGICAL REVIEWS, 1995, 59 (01) :143-169
[8]  
[Anonymous], AQUATIC MICROBIOLOGY
[9]   STRICTLY AEROBIC AND ANAEROBIC-BACTERIA ASSOCIATED WITH SINKING PARTICULATE MATTER AND ZOOPLANKTON FECAL PELLETS [J].
BIANCHI, M ;
MARTY, D ;
TEYSSIE, JL ;
FOWLER, SW .
MARINE ECOLOGY PROGRESS SERIES, 1992, 88 (01) :55-60
[10]   COMPARISON OF FREE-LIVING AND PARTICLE-ASSOCIATED BACTERIAL COMMUNITIES IN THE CHESAPEAKE BAY BY STABLE LOW-MOLECULAR-WEIGHT RNA ANALYSIS [J].
BIDLE, KD ;
FLETCHER, M .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1995, 61 (03) :944-952