Carbon Coated ZnFe2O4 Nanoparticles for Advanced Lithium-Ion Anodes

被引:314
作者
Bresser, Dominic [1 ,2 ]
Paillard, Elie [1 ,2 ]
Kloepsch, Richard [1 ,2 ]
Krueger, Steffen [1 ,2 ]
Fiedler, Martin [3 ]
Schmitz, Rene [1 ,2 ]
Baither, Dietmar [3 ]
Winter, Martin [1 ,2 ]
Passerini, Stefano [1 ,2 ]
机构
[1] Univ Munster, Inst Phys Chem, Battery Res Ctr, D-48149 Munster, Germany
[2] Univ Munster, MEET, Battery Res Ctr, D-48149 Munster, Germany
[3] Univ Munster, Inst Mat Phys, D-48149 Munster, Germany
关键词
carbon coating; in situ XRD; lithium-ion anode; nanoparticles; ZnFe2O4; ZNO SOLID-SOLUTIONS; X-RAY-SCATTERING; NEGATIVE ELECTRODES; ELECTROCHEMICAL PERFORMANCE; HIGH-PRESSURE; REVERSIBLE CAPACITY; INSERTION REACTIONS; RATE CAPABILITY; PARTICLE-SIZE; LI;
D O I
10.1002/aenm.201200735
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The preparation and electrochemical characterization of a new material consisting of carbon coated ZnFe2O4 nanoparticles is presented. This material, which offers an interesting combination of alloying and conversion mechanisms, is capable of hosting up to nine equivalents of lithium per unit formula, corresponding to an exceptional specific capacity, higher than 1000 mAh g1. Composite electrodes of such a material, prepared using environmentally friendly sodium carboxymethyl cellulose as binder, showed the highest, ever reported, specific capacity and high rate performance upon long-term testing. Furthermore, in situ X-ray diffraction analysis allowed identifying the reduction process occurring upon initial lithiation.
引用
收藏
页码:513 / 523
页数:11
相关论文
共 76 条
[1]   Changes in oxidation state and magnetic order of iron atoms during the electrochemical reaction of lithium with NiFe2O4 [J].
Alcántara, R ;
Jaraba, M ;
Lavela, P ;
Tirado, JL ;
Jumas, JC ;
Olivier-Fourcade, J .
ELECTROCHEMISTRY COMMUNICATIONS, 2003, 5 (01) :16-21
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   Structural stability of ZnFe2O4 nanoparticles under different annealing conditions [J].
Ayyappan, S. ;
Paneerselvam, G. ;
Antony, M. P. ;
Philip, John .
MATERIALS CHEMISTRY AND PHYSICS, 2011, 128 (03) :400-404
[4]   Raman Microspectrometry Applied to the Study of Electrode Materials for Lithium Batteries [J].
Baddour-Hadjean, Rita ;
Pereira-Ramos, Jean-Pierre .
CHEMICAL REVIEWS, 2010, 110 (03) :1278-1319
[5]   Synthesis of rock-salt MeO-ZnO solid solutions (Me=Ni 2+, Co2+, Fe2+, Mn2+) at high pressure and high temperature [J].
Baranov, A. N. ;
Sokolov, P. S. ;
Kurakevych, O. O. ;
Tafeenko, V. A. ;
Trots, D. ;
Solozhenko, V. L. .
HIGH PRESSURE RESEARCH, 2008, 28 (04) :515-519
[6]   Novel tin oxide-based anodes for Li-ion batteries [J].
Belliard, F ;
Connor, PA ;
Irvine, JTS .
SOLID STATE IONICS, 2000, 135 (1-4) :163-167
[7]   Electrochemical performance of ball-milled ZnO-SnO2 systems as anodes in lithium-ion battery [J].
Belliard, F ;
Irvine, JTS .
JOURNAL OF POWER SOURCES, 2001, 97-8 :219-222
[8]   The importance of "going nano" for high power battery materials [J].
Bresser, Dominic ;
Paillard, Elie ;
Copley, Mark ;
Bishop, Peter ;
Winter, Martin ;
Passerini, Stefano .
JOURNAL OF POWER SOURCES, 2012, 219 :217-222
[9]   Percolating networks of TiO2 nanorods and carbon for high power lithium insertion electrodes [J].
Bresser, Dominic ;
Paillard, Elie ;
Binetti, Enrico ;
Krueger, Steffen ;
Striccoli, Marinella ;
Winter, Martin ;
Passerini, Stefano .
JOURNAL OF POWER SOURCES, 2012, 206 :301-309
[10]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946