The scalar potential in noncommutative geometry

被引:6
作者
Chamseddine, AH
机构
[1] Theoretische Physik, ETH-Hönggerberg, CH-8093, Zürich
关键词
D O I
10.1016/0370-2693(96)00089-5
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a derivation of the general form of the scalar potential in Yang-Mills theory of a non-commutative space which is a product of a four-dimensional manifold times a discrete set of points. We show that a non-trivial potential without flat directions is obtained after eliminating the auxiliary fields only if constraints are imposed on the mass matrices utilised in the Dirac operator. The constraints and potential are related to a prepotential function.
引用
收藏
页码:61 / 67
页数:7
相关论文
共 18 条
[1]   PARAMETER RESTRICTIONS IN A NONCOMMUTATIVE GEOMETRY MODEL DO NOT SURVIVE STANDARD QUANTUM CORRECTIONS [J].
ALVAREZ, E ;
GRACIABONDIA, JM ;
MARTIN, CP .
PHYSICS LETTERS B, 1993, 306 (1-2) :55-58
[2]   CONNECTION BETWEEN SPACE-TIME SUPERSYMMETRY AND NONCOMMUTATIVE GEOMETRY [J].
CHAMSEDDINE, AH .
PHYSICS LETTERS B, 1994, 332 (3-4) :349-357
[3]   SO(10) UNIFICATION IN NONCOMMUTATIVE GEOMETRY [J].
CHAMSEDDINE, AH ;
FROHLICH, J .
PHYSICAL REVIEW D, 1994, 50 (04) :2893-2907
[4]   GRAND UNIFICATION IN NONCOMMUTATIVE GEOMETRY [J].
CHAMSEDDINE, AH ;
FELDER, G ;
FROHLICH, J .
NUCLEAR PHYSICS B, 1993, 395 (03) :672-698
[5]  
CHAMSEDDINE AH, YANG FESTSCHRIFT
[6]  
CHAMSEDDINE AH, 1992, PHYS LETT B, V296, P301
[7]  
Connes A., 1991, Nuclear Physics B, Proceedings Supplements, V18B, P29, DOI 10.1016/0920-5632(91)90120-4
[8]  
CONNES A, 1995, TREST M NONC GEOM MA
[9]  
Connes A, 1983, PUBL MATH IHES, V62, P44
[10]  
CONNES A, 1992, P 1991 SUMM CARG C