Least absolute deviation estimation for regression with ARMA errors

被引:63
作者
Davis, RA [1 ]
Dunsmuir, WTM [1 ]
机构
[1] UNIV NEW S WALES,KENSINGTON,NSW 2033,AUSTRALIA
关键词
ARMA process; regression; least absolute deviation estimation; central limit theorem;
D O I
10.1023/A:1022620818679
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The asymptotic normality for least absolute deviation estimates of the parameters in a linear regression model with autoregressive moving average errors is established under very general conditions. The method of proof is based on a functional limit theorem for the LAD objective function.
引用
收藏
页码:481 / 497
页数:17
相关论文
共 10 条
[1]  
Bloomfield P., 1983, LEAST ABSOLUTE DEVIA
[2]  
BROCKWELL PJ, 1991, TIME SERIESA THEORY
[3]   Maximum likelihood estimation for MA(1) processes with a root on or near the unit circle [J].
Davis, RA ;
Dunsmuir, WTM .
ECONOMETRIC THEORY, 1996, 12 (01) :1-29
[4]   Gauss-Newton and M-estimation for ARMA processes with infinite variance [J].
Davis, RA .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1996, 63 (01) :75-95
[5]   M-ESTIMATION FOR AUTOREGRESSIONS WITH INFINITE VARIANCE [J].
DAVIS, RA ;
KNIGHT, K ;
LIU, J .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1992, 40 (01) :145-180
[6]  
DUNSMUIR WTM, 1991, J TIME SER ANAL, V12, P95
[7]  
HALL P, 1980, MARTINGALE LIMIT THE
[8]  
Hannan EJ, 1970, MULTIPLE TIME SERIES
[9]   ASYMPTOTICS FOR LEAST ABSOLUTE DEVIATION REGRESSION-ESTIMATORS [J].
POLLARD, D .
ECONOMETRIC THEORY, 1991, 7 (02) :186-199
[10]  
Rockafellar R. T., 1972, Princeton Mathematical Series