A fuzzy k-modes algorithm for clustering categorical data

被引:289
作者
Huang, ZX [1 ]
Ng, MK
机构
[1] Management Informat Principles Ltd, Melbourne, Vic, Australia
[2] Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
关键词
categorical data; clustering; data mining; fuzzy partitioning; k -means algorithm;
D O I
10.1109/91.784206
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This correspondence describes extensions to the fuzzy k-means algorithm for clustering categorical data. By using a simple matching dissimilarity measure for categorical objects and modes instead of means for clusters, a new approach is developed, which allows the use of the k-means paradigm to efficiently cluster large categorical data sets. A fuzzy k-modes algorithm is presented and the effectiveness of the algorithm is demonstrated with experimental results.
引用
收藏
页码:446 / 452
页数:7
相关论文
共 18 条