Novel Low Abundance and Transient RNAs in Yeast Revealed by Tiling Microarrays and Ultra High-Throughput Sequencing Are Not Conserved Across Closely Related Yeast Species

被引:31
作者
Lee, Albert [1 ]
Hansen, Kasper Daniel [2 ]
Bullard, James [2 ]
Dudoit, Sandrine [2 ]
Sherlock, Gavin [1 ]
机构
[1] Stanford Univ, Dept Genet, Stanford, CA 94305 USA
[2] Univ Calif Berkeley, Sch Publ Hlth, Div Biostat, Berkeley, CA 94720 USA
来源
PLOS GENETICS | 2008年 / 4卷 / 12期
关键词
D O I
10.1371/journal.pgen.1000299
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
A complete description of the transcriptome of an organism is crucial for a comprehensive understanding of how it functions and how its transcriptional networks are controlled, and may provide insights into the organism's evolution. Despite the status of Saccharomyces cerevisiae as arguably the most well-studied model eukaryote, we still do not have a full catalog or understanding of all its genes. In order to interrogate the transcriptome of S. cerevisiae for low abundance or rapidly turned over transcripts, we deleted elements of the RNA degradation machinery with the goal of preferentially increasing the relative abundance of such transcripts. We then used high-resolution tiling microarrays and ultra high throughput sequencing (UHTS) to identify, map, and validate unannotated transcripts that are more abundant in the RNA degradation mutants relative to wild-type cells. We identified 365 currently unannotated transcripts, the majority presumably representing low abundance or short-lived RNAs, of which 185 are previously unknown and unique to this study. It is likely that many of these are cryptic unstable transcripts (CUTs), which are rapidly degraded and whose function(s) within the cell are still unclear, while others may be novel functional transcripts. Of the 185 transcripts we identified as novel to our study, greater than 80 percent come from regions of the genome that have lower conservation scores amongst closely related yeast species than 85 percent of the verified ORFs in S. cerevisiae. Such regions of the genome have typically been less well-studied, and by definition transcripts from these regions will distinguish S. cerevisiae from these closely related species.
引用
收藏
页数:18
相关论文
共 79 条
[1]   The yeast exosome and human PM-Scl are related complexes of 3′→5′ exonucleases [J].
Allmang, C ;
Petfalski, E ;
Podtelejnikov, A ;
Mann, M ;
Tollervey, D ;
Mitchell, P .
GENES & DEVELOPMENT, 1999, 13 (16) :2148-2158
[2]   The 3′ to 5′ degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3′ to 5′ exonucleases of the exosome complex [J].
Anderson, JSJ ;
Parker, R .
EMBO JOURNAL, 1998, 17 (05) :1497-1506
[3]   An essential component of the decapping enzyme required for normal rates of mRNA turnover [J].
Beelman, CA ;
Stevens, A ;
Caponigro, G ;
LaGrandeur, TE ;
Hatfield, L ;
Fortner, DM ;
Parker, R .
NATURE, 1996, 382 (6592) :642-646
[4]   Toward the $1000 human genome [J].
Bennett, ST ;
Barnes, C ;
Cox, A ;
Davies, L ;
Brown, C .
PHARMACOGENOMICS, 2005, 6 (04) :373-382
[5]   Global identification of human transcribed sequences with genome tiling arrays [J].
Bertone, P ;
Stolc, V ;
Royce, TE ;
Rozowsky, JS ;
Urban, AE ;
Zhu, XW ;
Rinn, JL ;
Tongprasit, W ;
Samanta, M ;
Weissman, S ;
Gerstein, M ;
Snyder, M .
SCIENCE, 2004, 306 (5705) :2242-2246
[6]   Silencing the transcriptome's dark matter: Mechanisms for suppressing translation of intergenic transcripts [J].
Bickel, Kellie S. ;
Morris, David R. .
MOLECULAR CELL, 2006, 22 (03) :309-316
[7]   The two proteins Pat1p (Mrt1p) and Spb8p interact in vivo, are required for mRNA decay, and are functionally linked to Pab1p [J].
Bonnerot, C ;
Boeck, R ;
Lapeyre, B .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (16) :5939-5946
[8]   Identification of a regulated pathway for nuclear pre-mRNA turnover [J].
Bousquet-Antonelli, C ;
Presutti, C ;
Tollervey, D .
CELL, 2000, 102 (06) :765-775
[9]   GO::TermFinder - open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes [J].
Boyle, EI ;
Weng, SA ;
Gollub, J ;
Jin, H ;
Botstein, D ;
Cherry, JM ;
Sherlock, G .
BIOINFORMATICS, 2004, 20 (18) :3710-3715
[10]   Reinvestigation of the Saccharomyces cerevisiae genome annotation by comparison to the genome of a related fungus:: Ashbya gossypii -: art. no. R45 [J].
Brachat, S ;
Dietrich, FS ;
Voegeli, S ;
Zhang, ZH ;
Stuart, L ;
Lerch, A ;
Gates, K ;
Gaffney, T ;
Philippsen, P .
GENOME BIOLOGY, 2003, 4 (07)