Near-critical reflection of internal waves

被引:83
作者
Dauxois, T [1 ]
Young, WR [1 ]
机构
[1] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA
关键词
D O I
10.1017/S0022112099005108
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Using a matched asymptotic expansion we analyse the two-dimensional, near-critical reflection of a weakly nonlinear internal gravity wave from a sloping boundary in a uniformly stratified fluid. Taking a distinguished limit in which the amplitude of the incident wave, the dissipation, and the departure from criticality are all small, we obtain a reduced description of the dynamics. This simplification shows how either dissipation or transience heals the singularity which is presented by the solution of Phillips (1966) in the precisely critical case. In the inviscid critical case, an explicit solution of the initial value problem shows that the buoyancy perturbation and the alongslope velocity both grow linearly with time, while the scale of the reflected disturbance is reduced as 1/t. During the course of this scale reduction, the stratification is 'overturned' and the Miles-Howard condition for stratified shear flow stability is violated. However, for all slope angles, the 'overturning' occurs before the Miles-Howard stability condition is violated and so we argue that the first instability is convective. Solutions of the simplified dynamics resemble certain experimental visualizations of the reflection process. In particular, the buoyancy field computed from the analytic solution is in good agreement with visualizations reported by Thorpe & Haines (1987). One curious aspect of the weakly nonlinear theory is that the final reduced description is a linear equation (at the solvability order in the expansion all of the apparently resonant nonlinear contributions cancel amongst themselves). However, the reconstructed fields do contain nonlinearly driven second harmonics which are responsible for an important symmetry breaking in which alternate vortices differ in strength and size from their immediate neighbours.
引用
收藏
页码:271 / 295
页数:25
相关论文
共 32 条
[1]  
[Anonymous], 1990, FLUID DYNAM+
[2]   SOME EVIDENCE FOR BOUNDARY MIXING IN DEEP OCEAN [J].
ARMI, L .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1978, 83 (NC4) :1971-1979
[3]   EXPERIMENTAL STUDY OF INTERNAL WAVES OVER A SLOPE [J].
CACCHIONE, D ;
WUNSCH, C .
JOURNAL OF FLUID MECHANICS, 1974, 66 (NOV6) :223-+
[4]   THERMAL MICROSTRUCTURE ON A LAKE SLOPE [J].
CALDWELL, DR ;
BRUBAKER, JM ;
NEAL, VT .
LIMNOLOGY AND OCEANOGRAPHY, 1978, 23 (02) :372-374
[5]   Localized mixing due to a breaking internal wave ray at a sloping bed [J].
DeSilva, IPD ;
Imberger, J ;
Ivey, GN .
JOURNAL OF FLUID MECHANICS, 1997, 350 :1-27
[6]   OBSERVATIONS OF INTERNAL WAVE REFLECTION OFF SLOPING BOTTOMS [J].
ERIKSEN, CC .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1982, 87 (NC1) :525-538
[7]  
ERIKSEN CC, 1985, J PHYS OCEANOGR, V15, P1145, DOI 10.1175/1520-0485(1985)015<1145:IOOBRF>2.0.CO
[8]  
2
[9]   Internal wave reflection and mixing at Fieberling Guyot [J].
Eriksen, CC .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1998, 103 (C2) :2977-2994
[10]   MEASUREMENTS AND MODELS OF FINE-STRUCTURE, INTERNAL GRAVITY-WAVES, AND WAVE BREAKING IN DEEP OCEAN [J].
ERIKSEN, CC .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1978, 83 (NC6) :2989-3009