Influence of leaf water content on the C-3-CAM transition in Mesembryanthemum crystallinum

被引:5
作者
Herppich, WB
Herppich, M
机构
[1] Inst. f. Ökologie der Pflanzen, Westfalische Wilhelms-Univ. Munster
关键词
CAM; Delta-citrate and Delta-malate; leaf water content; Mesembryanthemum crystallinum; PEPC activity;
D O I
10.1046/j.1469-8137.1997.00762.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Changes in leaf water content, night-time accumulation of malic (Delta-malate) and citric acid (Delta-citrate) and phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) activity were followed for 60 d after germination in well watered and salt-stressed plants of the facultatively halophytic ephemeral Mesembryanthemum crystallium L. To separate the effects of development, salt stress and water deficit on crassulacean acid metabolism (CAM) induction plants were stressed initially 10 d after germination and then successively at l-wk intervals (five sets). Related to dry mass or organic matter (i.e. dry mass corrected for the mass of inorganic ions) water content started to decrease during the late embryonal phase of the life cycle. Water content on a dry mass basis was always lower in salt-stressed than in well watered individuals. However, on an organic matter basis no difference was detectable. This indicated that salt treatment did not reduce leaf water content but falsified the basis (dry mass). Increases in leaf succulence and in pressure potential prevented long-term water deficit in well watered and in salt-stressed plants. Instead, these changes displayed enhanced vacuolisation, which is an essential prerequisite for the development of CAM. The end of that differentiation process might allow the initiation of nocturnal malic acid accumulation in a threshold response. At the onset of each salt treatment, short-term water deficits occurred due to an incomplete osmotic adaptation independent of plant age. As Delta-malate only appeared when plants were c. 35 d old this water deficit was unlikely to be a decisive CAM-inducing factor. About 2 wk after germination water content began to decline during the light periods in plants of all treatments. This pattern disappeared again when CAM had been fully established. Daytime transpirational water loss is therefore unlikely to be the decisive factor because it failed to induce the metabolic shift in young plants. Environmental stress (e.g. salt or draught) can therefore only induce Delta-malate when leaf and plant differentiation has reached a certain stage.
引用
收藏
页码:425 / 432
页数:8
相关论文
共 47 条
[1]  
Bergmeyer U, 1974, METHODEN ENZYMATISCH, V2, P1636
[2]  
Carter PJ, 1996, ECOL STU AN, V114, P46
[3]   INFLUENCE OF LONG PHOTOPERIODS ON PLANT DEVELOPMENT AND EXPRESSION OF CRASSULACEAN ACID METABOLISM IN MESEMBRYANTHEMUM-CRYSTALLINUM [J].
CHENG, SH ;
EDWARDS, GE .
PLANT CELL AND ENVIRONMENT, 1991, 14 (03) :271-278
[4]   INDUCTION OF CRASSULACEAN ACID METABOLISM IN THE FACULTATIVE HALOPHYTE MESEMBRYANTHEMUM-CRYSTALLINUM BY ABSCISIC-ACID [J].
CHU, C ;
DAI, ZY ;
KU, MSB ;
EDWARDS, GE .
PLANT PHYSIOLOGY, 1990, 93 (03) :1253-1260
[5]   RAPID TRIGGERING OF MALATE ACCUMULATION IN THE C-3/CAM INTERMEDIATE PLANT SEDUM-TELEPHIUM - RELATIONSHIP WITH WATER STATUS AND PHOSPHOENOLPYRUVATE CARBOXYLASE [J].
CONTI, S ;
SMIRNOFF, N .
JOURNAL OF EXPERIMENTAL BOTANY, 1994, 45 (280) :1613-1621
[6]   DEVELOPMENTAL CONTROL OF CRASSULACEAN ACID METABOLISM INDUCIBILITY BY SALT STRESS IN THE COMMON ICE PLANT [J].
CUSHMAN, JC ;
MICHALOWSKI, CB ;
BOHNERT, HJ .
PLANT PHYSIOLOGY, 1990, 94 (03) :1137-1142
[7]  
Cushman JC, 1996, ECOL STU AN, V114, P135
[8]   NOCTURNAL ACCUMULATION OF ACID IN LEAVES OF WALL PENNYWORT (UMBILICUS-RUPESTRIS) FOLLOWING EXPOSURE TO WATER-STRESS [J].
DANIEL, PP ;
WOODWARD, FI ;
BRYANT, JA ;
ETHERINGTON, JR .
ANNALS OF BOTANY, 1985, 55 (02) :217-223
[9]  
Edwards GE, 1996, ECOL STU AN, V114, P119
[10]   THE EFFECT OF TEMPERATURE AND LIGHT ON GAS-EXCHANGE AND ACID ACCUMULATION IN THE C3-CAM PLANT CLUSIA-MINOR L [J].
HAAGKERWER, A ;
FRANCO, AC ;
LUTTGE, U .
JOURNAL OF EXPERIMENTAL BOTANY, 1992, 43 (248) :345-352