Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism

被引:1909
作者
Ding, Fei [1 ,4 ]
Xu, Wu [1 ]
Graff, Gordon L. [1 ]
Zhang, Jian [1 ]
Sushko, Maria L. [2 ]
Chen, Xilin [1 ]
Shao, Yuyan [2 ]
Engelhard, Mark H. [3 ]
Nie, Zimin [1 ]
Xiao, Jie [1 ]
Liu, Xingjiang [4 ]
Sushko, Peter V. [2 ,5 ]
Liu, Jun [2 ]
Zhang, Ji-Guang [1 ]
机构
[1] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA
[2] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99354 USA
[3] Pacific NW Natl Lab, Environm & Mol Sci Lab, Richland, WA 99354 USA
[4] Tianjin Inst Power Sources, Natl Key Lab Power Sources, Tianjin 300381, Peoples R China
[5] UCL, London WC1E 6BT, England
关键词
VIBRATING ELECTRODE TECHNIQUE; IN-SITU; SURFACE-FILMS; HIGH-ENERGY; METAL; BATTERIES; MORPHOLOGY; INTERFACE; CARBONATE; AIR;
D O I
10.1021/ja312241y
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Rechargeable lithium metal batteries are considered the "Holy Grail" of energy storage systems. Unfortunately, uncontrollable dendritic lithium growth inherent in these batteries (upon repeated charge/discharge cycling) has prevented their practical application over the past 40 years. We show a novel mechanism that can fundamentally alter dendrite formation. At low concentrations, selected cations (such as cesium or rubidium ions) exhibit an effective reduction potential below the standard reduction potential of lithium ions. During lithium deposition, these additive cations form a positively charged electrostatic shield around the initial growth tip of the protuberances without reduction and deposition of the additives. This forces further deposition of lithium to adjacent regions of the anode and eliminates dendrite formation in lithium metal batteries. This strategy may also prevent dendrite growth in lithium-ion batteries as well as other metal batteries and transform the surface uniformity of coatings deposited in many general electrodeposition processes.
引用
收藏
页码:4450 / 4456
页数:7
相关论文
共 38 条
[1]   A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions [J].
Aurbach, D ;
Zinigrad, E ;
Cohen, Y ;
Teller, H .
SOLID STATE IONICS, 2002, 148 (3-4) :405-416
[2]   New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries [J].
Aurbach, D ;
Markovsky, B ;
Levi, MD ;
Levi, E ;
Schechter, A ;
Moshkovich, M ;
Cohen, Y .
JOURNAL OF POWER SOURCES, 1999, 81 :95-111
[3]   CORRELATION BETWEEN SURFACE-CHEMISTRY, MORPHOLOGY, CYCLING EFFICIENCY AND INTERFACIAL PROPERTIES OF LI ELECTRODES IN SOLUTIONS CONTAINING DIFFERENT LI SALTS [J].
AURBACH, D ;
WEISSMAN, I ;
ZABAN, A ;
CHUSID, O .
ELECTROCHIMICA ACTA, 1994, 39 (01) :51-71
[4]   The application of atomic force microscopy for the study of Li deposition processes [J].
Aurbach, D ;
Cohen, Y .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (11) :3525-3532
[5]  
Balsara N. P., 2009, U.S. Patent Appl., Patent No. [2009/0263725 A1, 20090263725]
[6]   Dendritic growth mechanisms in lithium/polymer cells [J].
Brissot, C ;
Rosso, M ;
Chazalviel, JN ;
Lascaud, S .
JOURNAL OF POWER SOURCES, 1999, 81 :925-929
[7]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[8]  
Chandrashekar S, 2012, NAT MATER, V11, P311, DOI [10.1038/NMAT3246, 10.1038/nmat3246]
[9]   MICROSCOPIC STUDIES OF TRANSITION-METAL CHALCOGENIDES [J].
CHIANELLI, RR .
JOURNAL OF CRYSTAL GROWTH, 1976, 34 (02) :239-244
[10]   Lithium metal stripping/plating mechanisms studies: A metallurgical approach [J].
Gireaud, L. ;
Grugeon, S. ;
Laruelle, S. ;
Yrieix, B. ;
Tarascon, J. -M. .
ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (10) :1639-1649