Graphene anchored with nickel nanoparticles as a high-performance anode material for lithium ion batteries

被引:120
作者
Mai, Y. J.
Tu, J. P. [1 ]
Gu, C. D.
Wang, X. L.
机构
[1] Zhejiang Univ, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China
关键词
Graphene; Nickel nanoparticles; Anode; Lithium ion battery; ELECTROCHEMICAL IMPEDANCE; SURFACE MODIFICATION; REVERSIBLE CAPACITY; LI STORAGE; GRAPHITE; COMPOSITE; INSERTION; ELECTRODE; FILMS;
D O I
10.1016/j.jpowsour.2012.02.073
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The surface of graphene is modified by nickel nanoparticles which are in-situ reduced from NiO nanopartidies by graphene. The nickel nanoparticles obtained are up to 10 nm in size and are strongly anchored on the surface of graphene sheets. As an anode material for lithium ion batteries, the graphene-Ni hybrid material delivers a reversible capacity of 675 mAh g(-1) after 35 discharge/charge cycles at a current density of 100 mA g(-1), corresponding to 85% retention of the initial charge capacity. In addition, the graphene-Ni hybrid electrode exhibits much better rate capability compared to its pure counterpart operated at various rates between 200 and 800 mA g(-1). Such enhanced lithium storage performance of the graphene-Ni hybrid electrode can be ascribed to the enhanced electronic transport and Li+ migration through the solid electrolyte interphase (SEI) film as a consequence of that the anchored nickel nanoparticles increase the electronic conductivity and modify the structure of SEI film covering the surface of graphene. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 46 条
[1]   X-ray photoelectron spectroscopy studies of lithium surfaces prepared in several important electrolyte solutions. A comparison with previous studies by Fourier transform infrared spectroscopy [J].
Aurbach, D ;
Weissman, I ;
Schechter, A ;
Cohen, H .
LANGMUIR, 1996, 12 (16) :3991-4007
[2]   Evaluation of solution-processed reduced graphene oxide films as transparent conductors [J].
Becerril, Hdctor A. ;
Mao, Jie ;
Liu, Zunfeng ;
Stoltenberg, Randall M. ;
Bao, Zhenan ;
Chen, Yongsheng .
ACS NANO, 2008, 2 (03) :463-470
[3]   Correlation of the irreversible lithium capacity with the active surface area of modified carbons [J].
Béguin, F ;
Chevallier, F ;
Vix-Guterl, C ;
Saadallah, S ;
Bertagna, V ;
Rouzaud, JN ;
Frackowiak, E .
CARBON, 2005, 43 (10) :2160-2167
[4]   An overview of graphene in energy production and storage applications [J].
Brownson, Dale A. C. ;
Kampouris, Dimitrios K. ;
Banks, Craig E. .
JOURNAL OF POWER SOURCES, 2011, 196 (11) :4873-4885
[5]   MECHANISMS FOR LITHIUM INSERTION IN CARBONACEOUS MATERIALS [J].
DAHN, JR ;
ZHENG, T ;
LIU, YH ;
XUE, JS .
SCIENCE, 1995, 270 (5236) :590-593
[6]   Atomic Structure of Reduced Graphene Oxide [J].
Gomez-Navarro, Cristina ;
Meyer, Jannik C. ;
Sundaram, Ravi S. ;
Chuvilin, Andrey ;
Kurasch, Simon ;
Burghard, Marko ;
Kern, Klaus ;
Kaiser, Ute .
NANO LETTERS, 2010, 10 (04) :1144-1148
[7]   Conformal Coating of Thin Polymer Electrolyte Layer on Nanostructured Electrode Materials for Three-Dimensional Battery Applications [J].
Gowda, Sanketh R. ;
Reddy, Arava Leela Mohana ;
Shaijumon, Manikoth M. ;
Zhan, Xiaobo ;
Ci, Lijie ;
Ajayan, Pulickel M. .
NANO LETTERS, 2011, 11 (01) :101-106
[8]   Nickel foam-supported porous NiO/Ag film electrode for lithium-ion batteries [J].
Huang, X. H. ;
Tu, J. P. ;
Zeng, Z. Y. ;
Xiang, J. Y. ;
Zhao, X. B. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (06) :A438-A441
[9]   Porous NiO/poly(3,4-ethylenedioxythiophene) films as anode materials for lithium ion batteries [J].
Huang, X. H. ;
Tu, J. P. ;
Xia, X. H. ;
Wang, X. L. ;
Xiang, J. Y. ;
Zhang, L. .
JOURNAL OF POWER SOURCES, 2010, 195 (04) :1207-1210
[10]   Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells [J].
Kasavajjula, Uday ;
Wang, Chunsheng ;
Appleby, A. John .
JOURNAL OF POWER SOURCES, 2007, 163 (02) :1003-1039