Hydrocarbon-like and oxygenated organic aerosols in Pittsburgh: insights into sources and processes of organic aerosols

被引:443
作者
Zhang, Q
Worsnop, DR
Canagaratna, MR
Jimenez, JL
机构
[1] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
[2] Aerodyne Res Inc, Billerica, MA 01821 USA
[3] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA
关键词
D O I
10.5194/acp-5-3289-2005
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A recently developed algorithm (Zhang et al., 2005) has been applied to deconvolve the mass spectra of organic aerosols acquired with the Aerosol Mass Spectrometer (AMS) in Pittsburgh during September 2002. The results are used here to characterize the mass concentrations, size distributions, and mass spectra of hydrocarbon-like and oxygenated organic aerosol (HOA and OOA, respectively). HOA accounts for 34% of the measured organic aerosol mass and OOA accounts for 66%. The mass concentrations of HOA demonstrate a prominent diurnal profile that peaks in the morning during the rush hour and decreases with the rise of the boundary layer. The diurnal profile of OOA is relatively flat and resembles those of SO(4)(2-) and NH(4)(+). The size distribution of HOA shows a distinct ultrafine mode that is commonly associated with fresh emissions while OOA is generally concentrated in the accumulation mode and appears to be mostly internally mixed with the inorganic ions, such as SO(4)(2-) and NH(4)(+). These observations suggest that HOA is likely primary aerosol from local, combustion-related emissions and that OOA is secondary organic aerosol (SOA) influenced by regional contributions. There is strong evidence of the direct correspondence of OOA to SOA during an intense new particle formation and growth event, when condensational growth of OOA was observed. The fact that the OOA mass spectrum from this event is very similar to that from the entire study suggests that the majority of OOA in Pittsburgh is likely SOA. O(3) appears to be a poor indicator for OOA concentration while SO(4)(2-) is a relatively good surrogate for this dataset. Since the diurnal averages of HOA track those of CO during day time, oxidation/ aging of HOA appears to be very small on the time scale of several hours. Based on extracted mass spectra and the likely elemental compositions of major m/z's, the organic mass to organic carbon ratios (OM: OC) of HOA and OOA are estimated at 1.2 and 2.2 mu g/mu gC, respectively, leading to an average OM: OC ratio of 1.8 for submicron OA in Pittsburgh during September. The C: O ratio of OOA is estimated at 1: 0.8. The carbon contents in HOA and OOA estimated accordingly correlate well to primary and secondary organic carbon, respectively, estimated by the OC/EC tracer technique (assuming POC-to-EC ratio= 1). In addition, the total carbon concentrations estimated from the AMS data agree well with those measured by the Sunset Laboratory Carbon analyzer (r(2)= 0.87; slope= 1.01 +/- 0.11). Our results represent the first direct estimate of the OM: OC ratio from highly time-resolved chemical composition measurements.
引用
收藏
页码:3289 / 3311
页数:23
相关论文
共 81 条
  • [1] Quantitative sampling using an Aerodyne aerosol mass spectrometer - 2. Measurements of fine particulate chemical composition in two U.K. cities
    Allan, JD
    Alfarra, MR
    Bower, KN
    Williams, PI
    Gallagher, MW
    Jimenez, JL
    McDonald, AG
    Nemitz, E
    Canagaratna, MR
    Jayne, JT
    Coe, H
    Worsnop, DR
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D3)
  • [2] Quantitative sampling using an Aerodyne aerosol mass spectrometer - 1. Techniques of data interpretation and error analysis
    Allan, JD
    Jimenez, JL
    Williams, PI
    Alfarra, MR
    Bower, KN
    Jayne, JT
    Coe, H
    Worsnop, DR
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D3)
  • [3] FOURIER-TRANSFORM INFRARED-SPECTROSCOPY OF AEROSOL COLLECTED IN A LOW-PRESSURE IMPACTOR (LPI/FTIR) - METHOD DEVELOPMENT AND FIELD CALIBRATION
    ALLEN, DT
    PALEN, EJ
    HAIMOV, MI
    HERING, SV
    YOUNG, JR
    [J]. AEROSOL SCIENCE AND TECHNOLOGY, 1994, 21 (04) : 325 - 342
  • [4] The regional nature of PM2.5 episodes in the upper Ohio River Valley
    Anderson, RR
    Martello, DV
    White, CM
    Crist, KC
    John, K
    Modey, WK
    Eatough, DJ
    [J]. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION, 2004, 54 (08): : 971 - 984
  • [5] [Anonymous], 2004, THESIS U MANCHESTER
  • [6] BATES TS, 2002, J GEOPHYS RES, V110, DOI DOI 10.1029/2005JD005797
  • [7] Secondary formation and the Smoky Mountain organic aerosol: An examination of aerosol polarity and functional group composition during SEAVS
    Blando, JD
    Porcja, RJ
    Li, TH
    Bowman, D
    Lioy, PJ
    Turpin, BJ
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1998, 32 (05) : 604 - 613
  • [8] Issues in the quantitation of functional groups by FTIR spectroscopic analysis of impactor-collected aerosol samples
    Blando, JD
    Porcja, RJ
    Turpin, BJ
    [J]. AEROSOL SCIENCE AND TECHNOLOGY, 2001, 35 (05) : 899 - 908
  • [9] Sources of atmospheric carbonaceous particulate matter in Pittsburgh, Pennsylvania
    Cabada, JC
    Pandis, SN
    Robinson, AL
    [J]. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION, 2002, 52 (06) : 732 - 741
  • [10] Estimating the secondary organic aerosol contribution to PM2.5 using the EC tracer method
    Cabada, JC
    Pandis, SN
    Subramanian, R
    Robinson, AL
    Polidori, A
    Turpin, B
    [J]. AEROSOL SCIENCE AND TECHNOLOGY, 2004, 38 : 140 - 155